三维不可压缩纳维-斯托克斯方程的离散外微积分离散化和傅立叶变换混合方法

Abdullah Abukhwejah, Pankaj Jagad, Ravi Samtaney, Peter Schmid
{"title":"三维不可压缩纳维-斯托克斯方程的离散外微积分离散化和傅立叶变换混合方法","authors":"Abdullah Abukhwejah, Pankaj Jagad, Ravi Samtaney, Peter Schmid","doi":"arxiv-2409.04731","DOIUrl":null,"url":null,"abstract":"The simulation of fluid flow problems, specifically incompressible flows\ngoverned by the Navier-Stokes equations (NSE), holds fundamental significance\nin a range of scientific and engineering applications. Traditional numerical\nmethods employed for solving these equations on three-dimensional (3D) meshes\nare commonly known for their moderate conservation properties, high\ncomputational intensity and substantial resource demands. Relying on its\nability to capture the intrinsic geometric and topological properties of\nsimplicial meshes, discrete exterior calculus (DEC) provides a discrete analog\nto differential forms and enables the discretization of partial differential\nequations (PDEs) on meshes.We present a hybrid discretization approach for the\n3D incompressible Navier-Stokes equations based on DEC and Fourier transform\n(FT). An existing conservative primitive variable DEC discretization of\nincompressible Navier-Stokes equations over surface simplicial meshes developed\nby Jagad et al. [1] is considered in the planar dimension while the Fourier\nexpansion is applied in the third dimension. The test cases of\nthree-dimensional lid-driven cavity and viscous Taylor-Green three-dimensional\nvortex (TGV) flows show that the simulation results using this hybrid approach\nare comparable to literature.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Discrete Exterior Calculus Discretization and Fourier Transform of the Incompressible Navier-Stokes Equations in 3D\",\"authors\":\"Abdullah Abukhwejah, Pankaj Jagad, Ravi Samtaney, Peter Schmid\",\"doi\":\"arxiv-2409.04731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The simulation of fluid flow problems, specifically incompressible flows\\ngoverned by the Navier-Stokes equations (NSE), holds fundamental significance\\nin a range of scientific and engineering applications. Traditional numerical\\nmethods employed for solving these equations on three-dimensional (3D) meshes\\nare commonly known for their moderate conservation properties, high\\ncomputational intensity and substantial resource demands. Relying on its\\nability to capture the intrinsic geometric and topological properties of\\nsimplicial meshes, discrete exterior calculus (DEC) provides a discrete analog\\nto differential forms and enables the discretization of partial differential\\nequations (PDEs) on meshes.We present a hybrid discretization approach for the\\n3D incompressible Navier-Stokes equations based on DEC and Fourier transform\\n(FT). An existing conservative primitive variable DEC discretization of\\nincompressible Navier-Stokes equations over surface simplicial meshes developed\\nby Jagad et al. [1] is considered in the planar dimension while the Fourier\\nexpansion is applied in the third dimension. The test cases of\\nthree-dimensional lid-driven cavity and viscous Taylor-Green three-dimensional\\nvortex (TGV) flows show that the simulation results using this hybrid approach\\nare comparable to literature.\",\"PeriodicalId\":501125,\"journal\":{\"name\":\"arXiv - PHYS - Fluid Dynamics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模拟流体流动问题,特别是纳维-斯托克斯方程(NSE)所控制的不可压缩流,在一系列科学和工程应用中具有重要意义。在三维(3D)网格上求解这些方程所采用的传统数值方法以其中等的守恒特性、高计算强度和大量资源需求而著称。离散外部微积分(DEC)能够捕捉到简单网格的固有几何和拓扑特性,因此它提供了一种离散的微分形式,并实现了网格上偏微分方程(PDEs)的离散化。我们在平面维考虑了 Jagad 等人[1]开发的现有曲面简网格上不可压缩 Navier-Stokes 方程的保守原始变量 DEC 离散方法,而在三维应用了傅里叶展开。三维顶盖驱动空腔和粘性泰勒-格林三维涡流(TGV)的试验结果表明,采用这种混合方法的模拟结果与文献报道的结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Discrete Exterior Calculus Discretization and Fourier Transform of the Incompressible Navier-Stokes Equations in 3D
The simulation of fluid flow problems, specifically incompressible flows governed by the Navier-Stokes equations (NSE), holds fundamental significance in a range of scientific and engineering applications. Traditional numerical methods employed for solving these equations on three-dimensional (3D) meshes are commonly known for their moderate conservation properties, high computational intensity and substantial resource demands. Relying on its ability to capture the intrinsic geometric and topological properties of simplicial meshes, discrete exterior calculus (DEC) provides a discrete analog to differential forms and enables the discretization of partial differential equations (PDEs) on meshes.We present a hybrid discretization approach for the 3D incompressible Navier-Stokes equations based on DEC and Fourier transform (FT). An existing conservative primitive variable DEC discretization of incompressible Navier-Stokes equations over surface simplicial meshes developed by Jagad et al. [1] is considered in the planar dimension while the Fourier expansion is applied in the third dimension. The test cases of three-dimensional lid-driven cavity and viscous Taylor-Green three-dimensional vortex (TGV) flows show that the simulation results using this hybrid approach are comparable to literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信