小火焰与湍流动能耗散率的关系

William A. Sirignano, Wes Hellwig, Sylvain L. Walsh
{"title":"小火焰与湍流动能耗散率的关系","authors":"William A. Sirignano, Wes Hellwig, Sylvain L. Walsh","doi":"arxiv-2409.04929","DOIUrl":null,"url":null,"abstract":"An analysis takes the variable value for turbulence kinetic energy\ndissipation rate $\\epsilon$ as it might appear from a turbulent combustion\ncomputation using either Reynolds-averaged Navier-Stokes (RANS) or large-eddy\nsimulation (LES) and relates it to both viscous dissipation rate and turbulence\nkinetic energy at the Kolmogorov scale. The imposed strain rate and vorticity\non these smallest eddies are readily and uniquely determined from knowledge of\nthat kinetic energy and viscous dissipation rate. Thus, a given value of\n$\\epsilon$ at a specific time and location determines the two mechanical\nconstraints (vorticity and strain rate) on the inflow to the flamelet. It is\nalso shown how $\\epsilon$ affects the sign of the Laplacian of pressure, which\nmust be negative to allow the existence of the flamelet. Using several\ndifferent flamelet models, with and without vorticity and with and without\ndifferential mass transport, different results for maximum flamelet\ntemperature, integrated flamelet burning rate, and stoichiometric flamelet\nscalar dissipation rate are obtained. For a given $\\epsilon$ value, flamelet\nmodels that do not consider vorticity and differential diffusion produce\nsubstantial errors in the information to be provided to the resolved or\nfiltered scales in a turbulent combustion computation.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flamelet Connection to Turbulence Kinetic Energy Dissipation Rate\",\"authors\":\"William A. Sirignano, Wes Hellwig, Sylvain L. Walsh\",\"doi\":\"arxiv-2409.04929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analysis takes the variable value for turbulence kinetic energy\\ndissipation rate $\\\\epsilon$ as it might appear from a turbulent combustion\\ncomputation using either Reynolds-averaged Navier-Stokes (RANS) or large-eddy\\nsimulation (LES) and relates it to both viscous dissipation rate and turbulence\\nkinetic energy at the Kolmogorov scale. The imposed strain rate and vorticity\\non these smallest eddies are readily and uniquely determined from knowledge of\\nthat kinetic energy and viscous dissipation rate. Thus, a given value of\\n$\\\\epsilon$ at a specific time and location determines the two mechanical\\nconstraints (vorticity and strain rate) on the inflow to the flamelet. It is\\nalso shown how $\\\\epsilon$ affects the sign of the Laplacian of pressure, which\\nmust be negative to allow the existence of the flamelet. Using several\\ndifferent flamelet models, with and without vorticity and with and without\\ndifferential mass transport, different results for maximum flamelet\\ntemperature, integrated flamelet burning rate, and stoichiometric flamelet\\nscalar dissipation rate are obtained. For a given $\\\\epsilon$ value, flamelet\\nmodels that do not consider vorticity and differential diffusion produce\\nsubstantial errors in the information to be provided to the resolved or\\nfiltered scales in a turbulent combustion computation.\",\"PeriodicalId\":501125,\"journal\":{\"name\":\"arXiv - PHYS - Fluid Dynamics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析采用雷诺平均纳维-斯托克斯(RANS)或大尺度模拟(LES)进行湍流燃烧计算时可能出现的湍流动能耗散率变量值($\epsilon$),并将其与柯尔莫哥洛夫尺度的粘性耗散率和湍流动能联系起来。根据动能和粘性耗散率的知识,这些最小涡流上的外加应变率和涡度很容易确定,而且是唯一的。因此,在特定的时间和地点,$epsilon$ 的给定值决定了流入小火焰的两个机械约束(涡度和应变率)。研究还显示了 $/epsilon$ 如何影响压力拉普拉斯的符号,压力拉普拉斯必须为负才能允许小火焰的存在。使用几种不同的小火焰模型,包括有涡度和无涡度模型,以及有差分质量输运和无差分质量输运模型,得到了不同的小火焰最高温度、综合小火焰燃烧速率和化学小火焰鳞片耗散率结果。对于给定的$\epsilon$值,不考虑涡度和差分扩散的火焰模型在湍流燃烧计算中提供给分辨或过滤尺度的信息中会产生巨大误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flamelet Connection to Turbulence Kinetic Energy Dissipation Rate
An analysis takes the variable value for turbulence kinetic energy dissipation rate $\epsilon$ as it might appear from a turbulent combustion computation using either Reynolds-averaged Navier-Stokes (RANS) or large-eddy simulation (LES) and relates it to both viscous dissipation rate and turbulence kinetic energy at the Kolmogorov scale. The imposed strain rate and vorticity on these smallest eddies are readily and uniquely determined from knowledge of that kinetic energy and viscous dissipation rate. Thus, a given value of $\epsilon$ at a specific time and location determines the two mechanical constraints (vorticity and strain rate) on the inflow to the flamelet. It is also shown how $\epsilon$ affects the sign of the Laplacian of pressure, which must be negative to allow the existence of the flamelet. Using several different flamelet models, with and without vorticity and with and without differential mass transport, different results for maximum flamelet temperature, integrated flamelet burning rate, and stoichiometric flamelet scalar dissipation rate are obtained. For a given $\epsilon$ value, flamelet models that do not consider vorticity and differential diffusion produce substantial errors in the information to be provided to the resolved or filtered scales in a turbulent combustion computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信