GelGenie:用于凝胶电泳图像分析的人工智能框架

Matthew Aquilina, Nathan J.W. Wu, Kiros Kwan, Filip Busic, James Dodd, Laura Nicolas-Saenz, Alan O'Callaghan, Peter Bankhead, Katherine E Dunn
{"title":"GelGenie:用于凝胶电泳图像分析的人工智能框架","authors":"Matthew Aquilina, Nathan J.W. Wu, Kiros Kwan, Filip Busic, James Dodd, Laura Nicolas-Saenz, Alan O'Callaghan, Peter Bankhead, Katherine E Dunn","doi":"10.1101/2024.09.06.611479","DOIUrl":null,"url":null,"abstract":"Gel electrophoresis is a ubiquitous laboratory method for the separation and semi-quantitative analysis of biomolecules. However, gel image analysis principles have barely advanced for decades, in stark contrast to other fields where AI has revolutionised data processing. Here, we show that an AI-based system can automatically identify gel bands in seconds for a wide range of experimental conditions, far surpassing the capabilities of current software. We used a dataset containing 500+ images of manually-labelled gels to train various U-Nets to accurately identify bands through segmentation, i.e. classifying pixels as 'band' or 'background'. When applied to gel electrophoresis data from other laboratories, our system generated results that quantitatively matched those of the original authors. We have publicly released our models through GelGenie, an open-source application that allows users to extract bands from gel images on their own devices, with no expert knowledge or experience required.","PeriodicalId":501108,"journal":{"name":"bioRxiv - Molecular Biology","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GelGenie: an AI-powered framework for gel electrophoresis image analysis\",\"authors\":\"Matthew Aquilina, Nathan J.W. Wu, Kiros Kwan, Filip Busic, James Dodd, Laura Nicolas-Saenz, Alan O'Callaghan, Peter Bankhead, Katherine E Dunn\",\"doi\":\"10.1101/2024.09.06.611479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gel electrophoresis is a ubiquitous laboratory method for the separation and semi-quantitative analysis of biomolecules. However, gel image analysis principles have barely advanced for decades, in stark contrast to other fields where AI has revolutionised data processing. Here, we show that an AI-based system can automatically identify gel bands in seconds for a wide range of experimental conditions, far surpassing the capabilities of current software. We used a dataset containing 500+ images of manually-labelled gels to train various U-Nets to accurately identify bands through segmentation, i.e. classifying pixels as 'band' or 'background'. When applied to gel electrophoresis data from other laboratories, our system generated results that quantitatively matched those of the original authors. We have publicly released our models through GelGenie, an open-source application that allows users to extract bands from gel images on their own devices, with no expert knowledge or experience required.\",\"PeriodicalId\":501108,\"journal\":{\"name\":\"bioRxiv - Molecular Biology\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.06.611479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.06.611479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

凝胶电泳是一种无处不在的实验室方法,用于生物分子的分离和半定量分析。然而,凝胶图像分析原理几十年来几乎没有什么进展,这与其他领域形成了鲜明对比,在这些领域,人工智能为数据处理带来了革命性的变化。在这里,我们展示了基于人工智能的系统能在几秒钟内自动识别各种实验条件下的凝胶条带,远远超过了现有软件的能力。我们使用了一个包含 500 多张人工标记凝胶图像的数据集,训练各种 U-Nets 通过分割准确识别条带,即把像素分为 "条带 "或 "背景"。当应用到其他实验室的凝胶电泳数据时,我们的系统产生的结果在数量上与原作者的结果相吻合。我们通过 GelGenie 公开发布了我们的模型,GelGenie 是一款开源应用程序,用户无需专业知识或经验,即可在自己的设备上从凝胶图像中提取条带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GelGenie: an AI-powered framework for gel electrophoresis image analysis
Gel electrophoresis is a ubiquitous laboratory method for the separation and semi-quantitative analysis of biomolecules. However, gel image analysis principles have barely advanced for decades, in stark contrast to other fields where AI has revolutionised data processing. Here, we show that an AI-based system can automatically identify gel bands in seconds for a wide range of experimental conditions, far surpassing the capabilities of current software. We used a dataset containing 500+ images of manually-labelled gels to train various U-Nets to accurately identify bands through segmentation, i.e. classifying pixels as 'band' or 'background'. When applied to gel electrophoresis data from other laboratories, our system generated results that quantitatively matched those of the original authors. We have publicly released our models through GelGenie, an open-source application that allows users to extract bands from gel images on their own devices, with no expert knowledge or experience required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信