通过广义海森堡群实现弱对称性和交换性的非紧凑不可逆性

IF 0.7 4区 数学 Q2 MATHEMATICS
Teresa Arias-Marco, José-Manuel Fernández-Barroso
{"title":"通过广义海森堡群实现弱对称性和交换性的非紧凑不可逆性","authors":"Teresa Arias-Marco, José-Manuel Fernández-Barroso","doi":"10.1007/s41980-024-00900-0","DOIUrl":null,"url":null,"abstract":"<p>Two Riemannian manifolds are said to be isospectral if there exists a unitary operator which intertwines their Laplace-Beltrami operator. In this paper, we prove in the non-compact setting the inaudibility of the weak symmetry property and the commutative property using an isospectral pair of 23 dimensional generalized Heisenberg groups.</p>","PeriodicalId":9395,"journal":{"name":"Bulletin of The Iranian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Compact Inaudibility of Weak Symmetry and Commutativity via Generalized Heisenberg Groups\",\"authors\":\"Teresa Arias-Marco, José-Manuel Fernández-Barroso\",\"doi\":\"10.1007/s41980-024-00900-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two Riemannian manifolds are said to be isospectral if there exists a unitary operator which intertwines their Laplace-Beltrami operator. In this paper, we prove in the non-compact setting the inaudibility of the weak symmetry property and the commutative property using an isospectral pair of 23 dimensional generalized Heisenberg groups.</p>\",\"PeriodicalId\":9395,\"journal\":{\"name\":\"Bulletin of The Iranian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Iranian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s41980-024-00900-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Iranian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s41980-024-00900-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果存在一个单位算子交织两个黎曼流形的拉普拉斯-贝尔特拉米算子,则称这两个流形为等谱流形。在本文中,我们利用 23 维广义海森堡群的等谱对,证明了在非紧凑环境中弱对称性和交换性的不可听性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Compact Inaudibility of Weak Symmetry and Commutativity via Generalized Heisenberg Groups

Two Riemannian manifolds are said to be isospectral if there exists a unitary operator which intertwines their Laplace-Beltrami operator. In this paper, we prove in the non-compact setting the inaudibility of the weak symmetry property and the commutative property using an isospectral pair of 23 dimensional generalized Heisenberg groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of The Iranian Mathematical Society
Bulletin of The Iranian Mathematical Society Mathematics-General Mathematics
CiteScore
1.40
自引率
0.00%
发文量
64
期刊介绍: The Bulletin of the Iranian Mathematical Society (BIMS) publishes original research papers as well as survey articles on a variety of hot topics from distinguished mathematicians. Research papers presented comprise of innovative contributions while expository survey articles feature important results that appeal to a broad audience. Articles are expected to address active research topics and are required to cite existing (including recent) relevant literature appropriately. Papers are critically reviewed on the basis of quality in its exposition, brevity, potential applications, motivation, value and originality of the results. The BIMS takes a high standard policy against any type plagiarism. The editorial board is devoted to solicit expert referees for a fast and unbiased review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信