新康托洛维奇型 Szász-Mirakjan 算子

IF 0.7 4区 数学 Q2 MATHEMATICS
Nazim I. Mahmudov, Mustafa Kara
{"title":"新康托洛维奇型 Szász-Mirakjan 算子","authors":"Nazim I. Mahmudov, Mustafa Kara","doi":"10.1007/s41980-024-00913-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a Kantorovich-type Szász–Mirakjan operators. Initially, we establish the recurrence relationship for the moments of these operators and provide the central moments up to the fourth degree. Subsequently, we analyze the local approximation properties of these operators using Peetre’s <i>K</i>-function. We investigate the rate of convergence, by utilizing the ordinary modulus of continuity and Lipschitz-type maximal functions. Additionally, we prove weighted approximation theorems and Voronoskaja-type theorems specific to these new operators. Following this, we introduce bivariate extension of these operators and investigate some approximation properties. Lastly, we include several numerical illustrative examples.</p>","PeriodicalId":9395,"journal":{"name":"Bulletin of The Iranian Mathematical Society","volume":"27 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Kantorovich-type Szász–Mirakjan Operators\",\"authors\":\"Nazim I. Mahmudov, Mustafa Kara\",\"doi\":\"10.1007/s41980-024-00913-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present a Kantorovich-type Szász–Mirakjan operators. Initially, we establish the recurrence relationship for the moments of these operators and provide the central moments up to the fourth degree. Subsequently, we analyze the local approximation properties of these operators using Peetre’s <i>K</i>-function. We investigate the rate of convergence, by utilizing the ordinary modulus of continuity and Lipschitz-type maximal functions. Additionally, we prove weighted approximation theorems and Voronoskaja-type theorems specific to these new operators. Following this, we introduce bivariate extension of these operators and investigate some approximation properties. Lastly, we include several numerical illustrative examples.</p>\",\"PeriodicalId\":9395,\"journal\":{\"name\":\"Bulletin of The Iranian Mathematical Society\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Iranian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s41980-024-00913-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Iranian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s41980-024-00913-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了康托洛维奇型 Szász-Mirakjan 算子。首先,我们建立了这些算子矩的递推关系,并提供了直到四度的中心矩。随后,我们利用 Peetre 的 K 函数分析了这些算子的局部逼近特性。我们利用普通连续性模数和 Lipschitz 型最大函数研究了收敛速率。此外,我们还证明了这些新算子特有的加权逼近定理和 Voronoskaja 型定理。随后,我们介绍了这些算子的双变量扩展,并研究了一些近似性质。最后,我们还列举了几个数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

New Kantorovich-type Szász–Mirakjan Operators

New Kantorovich-type Szász–Mirakjan Operators

In this paper, we present a Kantorovich-type Szász–Mirakjan operators. Initially, we establish the recurrence relationship for the moments of these operators and provide the central moments up to the fourth degree. Subsequently, we analyze the local approximation properties of these operators using Peetre’s K-function. We investigate the rate of convergence, by utilizing the ordinary modulus of continuity and Lipschitz-type maximal functions. Additionally, we prove weighted approximation theorems and Voronoskaja-type theorems specific to these new operators. Following this, we introduce bivariate extension of these operators and investigate some approximation properties. Lastly, we include several numerical illustrative examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of The Iranian Mathematical Society
Bulletin of The Iranian Mathematical Society Mathematics-General Mathematics
CiteScore
1.40
自引率
0.00%
发文量
64
期刊介绍: The Bulletin of the Iranian Mathematical Society (BIMS) publishes original research papers as well as survey articles on a variety of hot topics from distinguished mathematicians. Research papers presented comprise of innovative contributions while expository survey articles feature important results that appeal to a broad audience. Articles are expected to address active research topics and are required to cite existing (including recent) relevant literature appropriately. Papers are critically reviewed on the basis of quality in its exposition, brevity, potential applications, motivation, value and originality of the results. The BIMS takes a high standard policy against any type plagiarism. The editorial board is devoted to solicit expert referees for a fast and unbiased review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信