阶乘的乘积等于另一个阶乘的乘积

IF 0.7 4区 数学 Q2 MATHEMATICS
Wataru Takeda
{"title":"阶乘的乘积等于另一个阶乘的乘积","authors":"Wataru Takeda","doi":"10.1007/s41980-024-00906-8","DOIUrl":null,"url":null,"abstract":"<p>The Surányi–Hickerson conjecture is a long-standing unsolved problem of Diophantine equations. This conjecture states that all the solutions to <span>\\(\\ell _1!\\cdots \\ell _m!=k!\\)</span> with <span>\\(k-\\ell _m\\ge 2\\)</span> are <span>\\((\\ell _1,\\ldots ,\\ell _m;k)=(6,7;10),(3,5,7;10),(2,5,14;16)\\)</span> and (2, 3, 3, 7; 9). In this paper, we generalize the Surányi–Hickerson conjecture to <span>\\(\\ell _1!\\cdots \\ell _m!=k_1!\\cdots k_n!\\)</span>. We say that a solution <span>\\((\\ell _1,\\ldots ,\\ell _m;k_1,\\ldots ,k_n)\\)</span> is trivial if there exists a pair (<i>i</i>, <i>j</i>) such that <span>\\(|\\ell _i-k_j|=1\\)</span>. As in the Surányi–Hickerson conjecture, we give theoretical and computational results. In particular, we suggest that all non-trivial solutions to the equation <span>\\(\\ell _1!\\ell _2=k_1!k_2!\\)</span> are <span>\\((\\ell _1,\\ell _2;k_1,k_2)=(7,13;4,15)\\)</span>, (14, 62; 7, 66) and (22, 54; 18, 57).</p>","PeriodicalId":9395,"journal":{"name":"Bulletin of The Iranian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Product of Factorials Equal Another Product of Factorials\",\"authors\":\"Wataru Takeda\",\"doi\":\"10.1007/s41980-024-00906-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Surányi–Hickerson conjecture is a long-standing unsolved problem of Diophantine equations. This conjecture states that all the solutions to <span>\\\\(\\\\ell _1!\\\\cdots \\\\ell _m!=k!\\\\)</span> with <span>\\\\(k-\\\\ell _m\\\\ge 2\\\\)</span> are <span>\\\\((\\\\ell _1,\\\\ldots ,\\\\ell _m;k)=(6,7;10),(3,5,7;10),(2,5,14;16)\\\\)</span> and (2, 3, 3, 7; 9). In this paper, we generalize the Surányi–Hickerson conjecture to <span>\\\\(\\\\ell _1!\\\\cdots \\\\ell _m!=k_1!\\\\cdots k_n!\\\\)</span>. We say that a solution <span>\\\\((\\\\ell _1,\\\\ldots ,\\\\ell _m;k_1,\\\\ldots ,k_n)\\\\)</span> is trivial if there exists a pair (<i>i</i>, <i>j</i>) such that <span>\\\\(|\\\\ell _i-k_j|=1\\\\)</span>. As in the Surányi–Hickerson conjecture, we give theoretical and computational results. In particular, we suggest that all non-trivial solutions to the equation <span>\\\\(\\\\ell _1!\\\\ell _2=k_1!k_2!\\\\)</span> are <span>\\\\((\\\\ell _1,\\\\ell _2;k_1,k_2)=(7,13;4,15)\\\\)</span>, (14, 62; 7, 66) and (22, 54; 18, 57).</p>\",\"PeriodicalId\":9395,\"journal\":{\"name\":\"Bulletin of The Iranian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Iranian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s41980-024-00906-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Iranian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s41980-024-00906-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

苏拉尼-希克森猜想(Surányi-Hickerson conjecture)是一个长期悬而未决的二叉方程问题。这个猜想指出,所有与 \(k-\ell _m\ge 2\) 的 \(\ell _1!\cdots \ell _m!=k!\) 的解是 \((\ell _1,\ldots ,\ell _m;k)=(6,7;10),(3,5,7;10),(2,5,14;16)\) 和 (2, 3, 3, 7; 9)。在本文中,我们将苏拉尼-希克森猜想推广到了(ell _1!\cdots \ell _m!=k_1!\cdots k_n!\)。如果存在一对(i, j)使得\(|\ell _i-k_j|=1\), 我们就说\((\ell _1,\cdots ,\ell _m;k_1,\cdots ,k_n)\)解是微不足道的。与苏拉尼-希克森猜想一样,我们给出了理论和计算结果。特别是,我们提出方程 \(\ell _1!\ell _2=k_1!k_2!\) 的所有非三值解是 \((\ell_1,\ell_2;k_1,k_2)=(7,13;4,15)\)、(14, 62; 7, 66) 和 (22, 54; 18, 57)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Product of Factorials Equal Another Product of Factorials

The Surányi–Hickerson conjecture is a long-standing unsolved problem of Diophantine equations. This conjecture states that all the solutions to \(\ell _1!\cdots \ell _m!=k!\) with \(k-\ell _m\ge 2\) are \((\ell _1,\ldots ,\ell _m;k)=(6,7;10),(3,5,7;10),(2,5,14;16)\) and (2, 3, 3, 7; 9). In this paper, we generalize the Surányi–Hickerson conjecture to \(\ell _1!\cdots \ell _m!=k_1!\cdots k_n!\). We say that a solution \((\ell _1,\ldots ,\ell _m;k_1,\ldots ,k_n)\) is trivial if there exists a pair (ij) such that \(|\ell _i-k_j|=1\). As in the Surányi–Hickerson conjecture, we give theoretical and computational results. In particular, we suggest that all non-trivial solutions to the equation \(\ell _1!\ell _2=k_1!k_2!\) are \((\ell _1,\ell _2;k_1,k_2)=(7,13;4,15)\), (14, 62; 7, 66) and (22, 54; 18, 57).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of The Iranian Mathematical Society
Bulletin of The Iranian Mathematical Society Mathematics-General Mathematics
CiteScore
1.40
自引率
0.00%
发文量
64
期刊介绍: The Bulletin of the Iranian Mathematical Society (BIMS) publishes original research papers as well as survey articles on a variety of hot topics from distinguished mathematicians. Research papers presented comprise of innovative contributions while expository survey articles feature important results that appeal to a broad audience. Articles are expected to address active research topics and are required to cite existing (including recent) relevant literature appropriately. Papers are critically reviewed on the basis of quality in its exposition, brevity, potential applications, motivation, value and originality of the results. The BIMS takes a high standard policy against any type plagiarism. The editorial board is devoted to solicit expert referees for a fast and unbiased review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信