MGProx:用于强凸优化的带有自适应限制的非光滑多网格近端梯度法

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Andersen Ang, Hans De Sterck, Stephen Vavasis
{"title":"MGProx:用于强凸优化的带有自适应限制的非光滑多网格近端梯度法","authors":"Andersen Ang, Hans De Sterck, Stephen Vavasis","doi":"10.1137/23m1552140","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2788-2820, September 2024. <br/> Abstract. We study the combination of proximal gradient descent with multigrid for solving a class of possibly nonsmooth strongly convex optimization problems. We propose a multigrid proximal gradient method called MGProx, which accelerates the proximal gradient method by multigrid, based on using hierarchical information of the optimization problem. MGProx applies a newly introduced adaptive restriction operator to simplify the Minkowski sum of subdifferentials of the nondifferentiable objective function across different levels. We provide a theoretical characterization of MGProx. First we show that the MGProx update operator exhibits a fixed-point property. Next, we show that the coarse correction is a descent direction for the fine variable of the original fine level problem in the general nonsmooth case. Last, under some assumptions we provide the convergence rate for the algorithm. In the numerical tests on the elastic obstacle problem, which is an example of a nonsmooth convex optimization problem where the multigrid method can be applied, we show that MGProx has a faster convergence speed than competing methods.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":"33 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MGProx: A Nonsmooth Multigrid Proximal Gradient Method with Adaptive Restriction for Strongly Convex Optimization\",\"authors\":\"Andersen Ang, Hans De Sterck, Stephen Vavasis\",\"doi\":\"10.1137/23m1552140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2788-2820, September 2024. <br/> Abstract. We study the combination of proximal gradient descent with multigrid for solving a class of possibly nonsmooth strongly convex optimization problems. We propose a multigrid proximal gradient method called MGProx, which accelerates the proximal gradient method by multigrid, based on using hierarchical information of the optimization problem. MGProx applies a newly introduced adaptive restriction operator to simplify the Minkowski sum of subdifferentials of the nondifferentiable objective function across different levels. We provide a theoretical characterization of MGProx. First we show that the MGProx update operator exhibits a fixed-point property. Next, we show that the coarse correction is a descent direction for the fine variable of the original fine level problem in the general nonsmooth case. Last, under some assumptions we provide the convergence rate for the algorithm. In the numerical tests on the elastic obstacle problem, which is an example of a nonsmooth convex optimization problem where the multigrid method can be applied, we show that MGProx has a faster convergence speed than competing methods.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1552140\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1552140","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 优化期刊》,第 34 卷第 3 期,第 2788-2820 页,2024 年 9 月。 摘要我们研究了近似梯度下降法与多网格法的结合,以求解一类可能是非光滑的强凸优化问题。我们提出了一种名为 MGProx 的多网格近似梯度法,它利用优化问题的层次信息,通过多网格加速近似梯度法。MGProx 应用了一种新引入的自适应限制算子,以简化不同层次的无差异目标函数的子差分的闵可夫斯基和。首先,我们证明了 MGProx 更新算子具有定点特性。接着,我们证明了在一般非光滑情况下,粗修正是原始精细问题中精细变量的下降方向。最后,在一些假设条件下,我们给出了算法的收敛速率。弹性障碍物问题是非光滑凸优化问题的一个例子,多网格方法可以应用于该问题,在对该问题的数值测试中,我们证明 MGProx 比其他竞争方法具有更快的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MGProx: A Nonsmooth Multigrid Proximal Gradient Method with Adaptive Restriction for Strongly Convex Optimization
SIAM Journal on Optimization, Volume 34, Issue 3, Page 2788-2820, September 2024.
Abstract. We study the combination of proximal gradient descent with multigrid for solving a class of possibly nonsmooth strongly convex optimization problems. We propose a multigrid proximal gradient method called MGProx, which accelerates the proximal gradient method by multigrid, based on using hierarchical information of the optimization problem. MGProx applies a newly introduced adaptive restriction operator to simplify the Minkowski sum of subdifferentials of the nondifferentiable objective function across different levels. We provide a theoretical characterization of MGProx. First we show that the MGProx update operator exhibits a fixed-point property. Next, we show that the coarse correction is a descent direction for the fine variable of the original fine level problem in the general nonsmooth case. Last, under some assumptions we provide the convergence rate for the algorithm. In the numerical tests on the elastic obstacle problem, which is an example of a nonsmooth convex optimization problem where the multigrid method can be applied, we show that MGProx has a faster convergence speed than competing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信