{"title":"寻找复合优化问题驻点的自洽最优和无参数一阶方法","authors":"Weiwei Kong","doi":"10.1137/22m1498826","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 3005-3032, September 2024. <br/> Abstract. This paper develops and analyzes an accelerated proximal descent method for finding stationary points of nonconvex composite optimization problems. The objective function is of the form [math], where [math] is a proper closed convex function, [math] is a differentiable function on the domain of [math], and [math] is Lipschitz continuous on the domain of [math]. The main advantage of this method is that it is “parameter-free” in the sense that it does not require knowledge of the Lipschitz constant of [math] or of any global topological properties of [math]. It is shown that the proposed method can obtain an [math]-approximate stationary point with iteration complexity bounds that are optimal, up to logarithmic terms over [math], in both the convex and nonconvex settings. Some discussion is also given about how the proposed method can be leveraged in other existing optimization frameworks, such as min-max smoothing and penalty frameworks for constrained programming, to create more specialized parameter-free methods. Finally, numerical experiments are presented to support the practical viability of the method.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":"71 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity-Optimal and Parameter-Free First-Order Methods for Finding Stationary Points of Composite Optimization Problems\",\"authors\":\"Weiwei Kong\",\"doi\":\"10.1137/22m1498826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 3, Page 3005-3032, September 2024. <br/> Abstract. This paper develops and analyzes an accelerated proximal descent method for finding stationary points of nonconvex composite optimization problems. The objective function is of the form [math], where [math] is a proper closed convex function, [math] is a differentiable function on the domain of [math], and [math] is Lipschitz continuous on the domain of [math]. The main advantage of this method is that it is “parameter-free” in the sense that it does not require knowledge of the Lipschitz constant of [math] or of any global topological properties of [math]. It is shown that the proposed method can obtain an [math]-approximate stationary point with iteration complexity bounds that are optimal, up to logarithmic terms over [math], in both the convex and nonconvex settings. Some discussion is also given about how the proposed method can be leveraged in other existing optimization frameworks, such as min-max smoothing and penalty frameworks for constrained programming, to create more specialized parameter-free methods. Finally, numerical experiments are presented to support the practical viability of the method.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1498826\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1498826","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Complexity-Optimal and Parameter-Free First-Order Methods for Finding Stationary Points of Composite Optimization Problems
SIAM Journal on Optimization, Volume 34, Issue 3, Page 3005-3032, September 2024. Abstract. This paper develops and analyzes an accelerated proximal descent method for finding stationary points of nonconvex composite optimization problems. The objective function is of the form [math], where [math] is a proper closed convex function, [math] is a differentiable function on the domain of [math], and [math] is Lipschitz continuous on the domain of [math]. The main advantage of this method is that it is “parameter-free” in the sense that it does not require knowledge of the Lipschitz constant of [math] or of any global topological properties of [math]. It is shown that the proposed method can obtain an [math]-approximate stationary point with iteration complexity bounds that are optimal, up to logarithmic terms over [math], in both the convex and nonconvex settings. Some discussion is also given about how the proposed method can be leveraged in other existing optimization frameworks, such as min-max smoothing and penalty frameworks for constrained programming, to create more specialized parameter-free methods. Finally, numerical experiments are presented to support the practical viability of the method.
期刊介绍:
The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.