论广义幂锥的最小扩展表示

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Víctor Blanco, Miguel Martínez-Antón
{"title":"论广义幂锥的最小扩展表示","authors":"Víctor Blanco, Miguel Martínez-Antón","doi":"10.1137/23m1617205","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 3088-3111, September 2024. <br/> Abstract. In this paper, we analyze minimal representations of [math]-power cones as simpler cones. We derive some new results on the complexity of the representations, and we provide a procedure to construct a minimal representation by means of second order cones in case [math] and [math] are rational. The construction is based on the identification of the cones with a graph, the mediated graph. Then, we develop a mixed integer linear optimization formulation to obtain the optimal mediated graph, and then the minimal representation. We present the results of a series of computational experiments in order to analyze the computational performance of the approach, both to obtain the representation and its incorporation into a practical conic optimization model that arises in facility location.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":"178 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Minimal Extended Representations of Generalized Power Cones\",\"authors\":\"Víctor Blanco, Miguel Martínez-Antón\",\"doi\":\"10.1137/23m1617205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 3, Page 3088-3111, September 2024. <br/> Abstract. In this paper, we analyze minimal representations of [math]-power cones as simpler cones. We derive some new results on the complexity of the representations, and we provide a procedure to construct a minimal representation by means of second order cones in case [math] and [math] are rational. The construction is based on the identification of the cones with a graph, the mediated graph. Then, we develop a mixed integer linear optimization formulation to obtain the optimal mediated graph, and then the minimal representation. We present the results of a series of computational experiments in order to analyze the computational performance of the approach, both to obtain the representation and its incorporation into a practical conic optimization model that arises in facility location.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":\"178 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1617205\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1617205","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 优化期刊》,第 34 卷第 3 期,第 3088-3111 页,2024 年 9 月。 摘要在本文中,我们分析了[math]-幂锥作为简锥的最小表示。我们得出了一些关于表示复杂性的新结果,并提供了在 [math] 和 [math] 都是有理数的情况下通过二阶圆锥构造最小表示的过程。该构造基于锥形与图形(即中介图)的识别。然后,我们开发了一种混合整数线性优化公式,以获得最佳中介图,进而获得最小表示。我们展示了一系列计算实验的结果,以分析该方法的计算性能,包括获得表示法以及将其纳入设施选址中出现的实际圆锥优化模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Minimal Extended Representations of Generalized Power Cones
SIAM Journal on Optimization, Volume 34, Issue 3, Page 3088-3111, September 2024.
Abstract. In this paper, we analyze minimal representations of [math]-power cones as simpler cones. We derive some new results on the complexity of the representations, and we provide a procedure to construct a minimal representation by means of second order cones in case [math] and [math] are rational. The construction is based on the identification of the cones with a graph, the mediated graph. Then, we develop a mixed integer linear optimization formulation to obtain the optimal mediated graph, and then the minimal representation. We present the results of a series of computational experiments in order to analyze the computational performance of the approach, both to obtain the representation and its incorporation into a practical conic optimization model that arises in facility location.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信