鞍流动力学统一分析:稳定性与算法设计

Pengcheng You, Yingzhu Liu, Enrique Mallada
{"title":"鞍流动力学统一分析:稳定性与算法设计","authors":"Pengcheng You, Yingzhu Liu, Enrique Mallada","doi":"arxiv-2409.05290","DOIUrl":null,"url":null,"abstract":"This work examines the conditions for asymptotic and exponential convergence\nof saddle flow dynamics of convex-concave functions. First, we propose an\nobservability-based certificate for asymptotic convergence, directly bridging\nthe gap between the invariant set in a LaSalle argument and the equilibrium set\nof saddle flows. This certificate generalizes conventional conditions for\nconvergence, e.g., strict convexity-concavity, and leads to a novel\nstate-augmentation method that requires minimal assumptions for asymptotic\nconvergence. We also show that global exponential stability follows from strong\nconvexity-strong concavity, providing a lower-bound estimate of the convergence\nrate. This insight also explains the convergence of proximal saddle flows for\nstrongly convex-concave objective functions. Our results generalize to dynamics\nwith projections on the vector field and have applications in solving\nconstrained convex optimization via primal-dual methods. Based on these\ninsights, we study four algorithms built upon different Lagrangian function\ntransformations. We validate our work by applying these methods to solve a\nnetwork flow optimization and a Lasso regression problem.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Unified Analysis of Saddle Flow Dynamics: Stability and Algorithm Design\",\"authors\":\"Pengcheng You, Yingzhu Liu, Enrique Mallada\",\"doi\":\"arxiv-2409.05290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work examines the conditions for asymptotic and exponential convergence\\nof saddle flow dynamics of convex-concave functions. First, we propose an\\nobservability-based certificate for asymptotic convergence, directly bridging\\nthe gap between the invariant set in a LaSalle argument and the equilibrium set\\nof saddle flows. This certificate generalizes conventional conditions for\\nconvergence, e.g., strict convexity-concavity, and leads to a novel\\nstate-augmentation method that requires minimal assumptions for asymptotic\\nconvergence. We also show that global exponential stability follows from strong\\nconvexity-strong concavity, providing a lower-bound estimate of the convergence\\nrate. This insight also explains the convergence of proximal saddle flows for\\nstrongly convex-concave objective functions. Our results generalize to dynamics\\nwith projections on the vector field and have applications in solving\\nconstrained convex optimization via primal-dual methods. Based on these\\ninsights, we study four algorithms built upon different Lagrangian function\\ntransformations. We validate our work by applying these methods to solve a\\nnetwork flow optimization and a Lasso regression problem.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了凸凹函数鞍流动力学的渐近收敛和指数收敛条件。首先,我们提出了基于可观测性的渐近收敛证明,直接弥补了拉萨尔论证中不变集与鞍流均衡集之间的差距。该证书概括了传统的收敛条件,如严格凸凹性,并产生了一种新颖的状态增强方法,该方法只需最少的假设即可实现渐近收敛。我们还证明了强凸性-强凹性带来的全局指数稳定性,提供了收敛性的下限估计。这一见解也解释了强凸凹目标函数近似鞍流的收敛性。我们的结果可推广到向量场上有投影的动力学,并可应用于通过初等-二元方法求解有约束的凸优化。基于这些观点,我们研究了建立在不同拉格朗日函数变换基础上的四种算法。我们将这些方法应用于解决网络流优化和拉索回归问题,从而验证了我们的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Unified Analysis of Saddle Flow Dynamics: Stability and Algorithm Design
This work examines the conditions for asymptotic and exponential convergence of saddle flow dynamics of convex-concave functions. First, we propose an observability-based certificate for asymptotic convergence, directly bridging the gap between the invariant set in a LaSalle argument and the equilibrium set of saddle flows. This certificate generalizes conventional conditions for convergence, e.g., strict convexity-concavity, and leads to a novel state-augmentation method that requires minimal assumptions for asymptotic convergence. We also show that global exponential stability follows from strong convexity-strong concavity, providing a lower-bound estimate of the convergence rate. This insight also explains the convergence of proximal saddle flows for strongly convex-concave objective functions. Our results generalize to dynamics with projections on the vector field and have applications in solving constrained convex optimization via primal-dual methods. Based on these insights, we study four algorithms built upon different Lagrangian function transformations. We validate our work by applying these methods to solve a network flow optimization and a Lasso regression problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信