通过边界超平面覆盖实现反凸集整数编程的复杂性

Robert Hildebrand, Adrian Göß
{"title":"通过边界超平面覆盖实现反凸集整数编程的复杂性","authors":"Robert Hildebrand, Adrian Göß","doi":"arxiv-2409.05308","DOIUrl":null,"url":null,"abstract":"We study the complexity of identifying the integer feasibility of reverse\nconvex sets. We present various settings where the complexity can be either\nNP-Hard or efficiently solvable when the dimension is fixed. Of particular\ninterest is the case of bounded reverse convex constraints with a polyhedral\ndomain. We introduce a structure, \\emph{Boundary Hyperplane Cover}, that\npermits this problem to be solved in polynomial time in fixed dimension\nprovided the number of nonlinear reverse convex sets is fixed.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity of Integer Programming in Reverse Convex Sets via Boundary Hyperplane Cover\",\"authors\":\"Robert Hildebrand, Adrian Göß\",\"doi\":\"arxiv-2409.05308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the complexity of identifying the integer feasibility of reverse\\nconvex sets. We present various settings where the complexity can be either\\nNP-Hard or efficiently solvable when the dimension is fixed. Of particular\\ninterest is the case of bounded reverse convex constraints with a polyhedral\\ndomain. We introduce a structure, \\\\emph{Boundary Hyperplane Cover}, that\\npermits this problem to be solved in polynomial time in fixed dimension\\nprovided the number of nonlinear reverse convex sets is fixed.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了识别反凸集整数可行性的复杂性。我们介绍了在维数固定的情况下,复杂度可以是 NP-Hard,也可以是高效求解的各种情况。我们特别感兴趣的是多面体域的有界反向凸约束。我们引入了一种结构,即有界超平面覆盖(\emph{Boundary Hyperplane Cover}),只要非线性反向凸集的数量固定,就能在固定维度下以多项式时间求解这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complexity of Integer Programming in Reverse Convex Sets via Boundary Hyperplane Cover
We study the complexity of identifying the integer feasibility of reverse convex sets. We present various settings where the complexity can be either NP-Hard or efficiently solvable when the dimension is fixed. Of particular interest is the case of bounded reverse convex constraints with a polyhedral domain. We introduce a structure, \emph{Boundary Hyperplane Cover}, that permits this problem to be solved in polynomial time in fixed dimension provided the number of nonlinear reverse convex sets is fixed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信