凸-凹双线性鞍点问题的梯霍诺夫正则化惯性初等-二元动力学

Xiangkai Sun, Liang He, Xian-Jun Long
{"title":"凸-凹双线性鞍点问题的梯霍诺夫正则化惯性初等-二元动力学","authors":"Xiangkai Sun, Liang He, Xian-Jun Long","doi":"arxiv-2409.05301","DOIUrl":null,"url":null,"abstract":"In this paper, for a convex-concave bilinear saddle point problem, we propose\na Tikhonov regularized second-order primal-dual dynamical system with slow\ndamping, extrapolation and general time scaling parameters. Depending on the\nvanishing speed of the rescaled regularization parameter (i.e., the product of\nTikhonov regularization parameter and general time scaling parameter), we\nanalyze the convergence properties of the trajectory generated by the dynamical\nsystem. When the rescaled regularization parameter decreases rapidly to zero,\nwe obtain convergence rates of the primal-dual gap and velocity vector along\nthe trajectory generated by the dynamical system. In the case that the rescaled\nregularization parameter tends slowly to zero, we show the strong convergence\nof the trajectory towards the minimal norm solution of the convex-concave\nbilinear saddle point problem. Further, we also present some numerical\nexperiments to illustrate the theoretical results.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tikhonov regularized inertial primal-dual dynamics for convex-concave bilinear saddle point problems\",\"authors\":\"Xiangkai Sun, Liang He, Xian-Jun Long\",\"doi\":\"arxiv-2409.05301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, for a convex-concave bilinear saddle point problem, we propose\\na Tikhonov regularized second-order primal-dual dynamical system with slow\\ndamping, extrapolation and general time scaling parameters. Depending on the\\nvanishing speed of the rescaled regularization parameter (i.e., the product of\\nTikhonov regularization parameter and general time scaling parameter), we\\nanalyze the convergence properties of the trajectory generated by the dynamical\\nsystem. When the rescaled regularization parameter decreases rapidly to zero,\\nwe obtain convergence rates of the primal-dual gap and velocity vector along\\nthe trajectory generated by the dynamical system. In the case that the rescaled\\nregularization parameter tends slowly to zero, we show the strong convergence\\nof the trajectory towards the minimal norm solution of the convex-concave\\nbilinear saddle point problem. Further, we also present some numerical\\nexperiments to illustrate the theoretical results.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对一个凸-凹双线性鞍点问题,提出了一个具有慢阻尼、外推法和一般时间缩放参数的提霍诺夫正则化二阶初等二元动力系统。根据重标定正则化参数(即狄霍诺夫正则化参数与一般时间缩放参数的乘积)的消失速度,我们分析了动力系统产生的轨迹的收敛特性。当重标定正则化参数迅速减小到零时,我们得到了动力系统产生的轨迹上的初等双缺口和速度矢量的收敛率。在重标定正则化参数缓慢趋于零的情况下,我们展示了轨迹向凸-凹线性鞍点问题的最小规范解的强烈收敛性。此外,我们还提出了一些数值实验来说明理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tikhonov regularized inertial primal-dual dynamics for convex-concave bilinear saddle point problems
In this paper, for a convex-concave bilinear saddle point problem, we propose a Tikhonov regularized second-order primal-dual dynamical system with slow damping, extrapolation and general time scaling parameters. Depending on the vanishing speed of the rescaled regularization parameter (i.e., the product of Tikhonov regularization parameter and general time scaling parameter), we analyze the convergence properties of the trajectory generated by the dynamical system. When the rescaled regularization parameter decreases rapidly to zero, we obtain convergence rates of the primal-dual gap and velocity vector along the trajectory generated by the dynamical system. In the case that the rescaled regularization parameter tends slowly to zero, we show the strong convergence of the trajectory towards the minimal norm solution of the convex-concave bilinear saddle point problem. Further, we also present some numerical experiments to illustrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信