关于两公制投影法的研究

Hanju Wu, Yue Xie
{"title":"关于两公制投影法的研究","authors":"Hanju Wu, Yue Xie","doi":"arxiv-2409.05321","DOIUrl":null,"url":null,"abstract":"The two-metric projection method is a simple yet elegant algorithm proposed\nby Bertsekas in 1984 to address bound/box-constrained optimization problems.\nThe algorithm's low per-iteration cost and potential for using Hessian\ninformation makes it a favourable computation method for this problem class.\nHowever, its global convergence guarantee is not studied in the nonconvex\nregime. In our work, we first investigate the global complexity of such a\nmethod for finding first-order stationary solution. After properly scaling each\nstep, we equip the algorithm with competitive complexity guarantees.\nFurthermore, we generalize the two-metric projection method for solving\n$\\ell_1$-norm minimization and discuss its properties via theoretical\nstatements and numerical experiments.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on two-metric projection methods\",\"authors\":\"Hanju Wu, Yue Xie\",\"doi\":\"arxiv-2409.05321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The two-metric projection method is a simple yet elegant algorithm proposed\\nby Bertsekas in 1984 to address bound/box-constrained optimization problems.\\nThe algorithm's low per-iteration cost and potential for using Hessian\\ninformation makes it a favourable computation method for this problem class.\\nHowever, its global convergence guarantee is not studied in the nonconvex\\nregime. In our work, we first investigate the global complexity of such a\\nmethod for finding first-order stationary solution. After properly scaling each\\nstep, we equip the algorithm with competitive complexity guarantees.\\nFurthermore, we generalize the two-metric projection method for solving\\n$\\\\ell_1$-norm minimization and discuss its properties via theoretical\\nstatements and numerical experiments.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

双度量投影法是贝采卡斯(Bertsekas)于 1984 年提出的一种简单而优雅的算法,用于解决约束/盒式约束优化问题。该算法的每次迭代成本低,而且有可能使用黑森信息,因此是该类问题的一种有利计算方法。在我们的工作中,我们首先研究了这种寻找一阶静止解方法的全局复杂性。在对每一步进行适当缩放后,我们为算法提供了有竞争力的复杂度保证。此外,我们还推广了用于求解$ell_1$-norm 最小化的两公制投影法,并通过理论陈述和数值实验讨论了它的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on two-metric projection methods
The two-metric projection method is a simple yet elegant algorithm proposed by Bertsekas in 1984 to address bound/box-constrained optimization problems. The algorithm's low per-iteration cost and potential for using Hessian information makes it a favourable computation method for this problem class. However, its global convergence guarantee is not studied in the nonconvex regime. In our work, we first investigate the global complexity of such a method for finding first-order stationary solution. After properly scaling each step, we equip the algorithm with competitive complexity guarantees. Furthermore, we generalize the two-metric projection method for solving $\ell_1$-norm minimization and discuss its properties via theoretical statements and numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信