采用灵活数字技术的 5G 网络高精度智能反射面辅助定位服务

Ti Ti Nguyen, Kim-Khoa Nguyen
{"title":"采用灵活数字技术的 5G 网络高精度智能反射面辅助定位服务","authors":"Ti Ti Nguyen, Kim-Khoa Nguyen","doi":"arxiv-2409.05639","DOIUrl":null,"url":null,"abstract":"Accurate positioning is paramount for a wide array of location-based services\n(LBS) in fifth-generation (5G) wireless networks. Recent advances in 5G New\nRadio (NR) technology holds promise for very high-precision positioning\nservices. Yet, challenges arise due to diverse types of numerology and massive\nconnected devices. This paper presents a novel approach to improve positioning\nprecision within a 5G NR framework with comb patterns on time-frequency\nresource mapping. We then formulate an optimization problem aimed at minimizing\nthe maximum users' positioning error in an intelligent reflected surface\n(IRS)-assisted 5G network by controlling the user-anchor association,\nnumerology-related selection, IRS's reflecting elements, privacy protection\nlevel, and transmit power. To address the non-convex nature of the underlying\nmixed-integer non-convex problem (MINLP), we propose an efficient algorithm\nthat combines optimization, matching, and learning techniques. Through\nextensive numerical experiments, we demonstrate the effectiveness of our\nproposed algorithm in minimizing positioning errors compared to conventional\nmethods.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Precision Intelligent Reflecting Surfaces-assisted Positioning Service in 5G Networks with Flexible Numerology\",\"authors\":\"Ti Ti Nguyen, Kim-Khoa Nguyen\",\"doi\":\"arxiv-2409.05639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate positioning is paramount for a wide array of location-based services\\n(LBS) in fifth-generation (5G) wireless networks. Recent advances in 5G New\\nRadio (NR) technology holds promise for very high-precision positioning\\nservices. Yet, challenges arise due to diverse types of numerology and massive\\nconnected devices. This paper presents a novel approach to improve positioning\\nprecision within a 5G NR framework with comb patterns on time-frequency\\nresource mapping. We then formulate an optimization problem aimed at minimizing\\nthe maximum users' positioning error in an intelligent reflected surface\\n(IRS)-assisted 5G network by controlling the user-anchor association,\\nnumerology-related selection, IRS's reflecting elements, privacy protection\\nlevel, and transmit power. To address the non-convex nature of the underlying\\nmixed-integer non-convex problem (MINLP), we propose an efficient algorithm\\nthat combines optimization, matching, and learning techniques. Through\\nextensive numerical experiments, we demonstrate the effectiveness of our\\nproposed algorithm in minimizing positioning errors compared to conventional\\nmethods.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在第五代(5G)无线网络中,精确定位对各种基于位置的服务(LBS)至关重要。5G 新无线电(NR)技术的最新进展为提供高精度定位服务带来了希望。然而,由于数字类型的多样性和海量连接设备,挑战也随之而来。本文提出了一种在 5G NR 框架内利用时频资源映射梳理模式提高定位精度的新方法。然后,我们提出了一个优化问题,旨在通过控制用户-锚点关联、数字相关选择、IRS 的反射元素、隐私保护级别和发射功率,最小化智能反射面(IRS)辅助 5G 网络中用户的最大定位误差。针对底层混合整数非凸问题(MINLP)的非凸性质,我们提出了一种结合优化、匹配和学习技术的高效算法。通过大量的数值实验,我们证明了与传统方法相比,我们提出的算法在最小化定位误差方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Precision Intelligent Reflecting Surfaces-assisted Positioning Service in 5G Networks with Flexible Numerology
Accurate positioning is paramount for a wide array of location-based services (LBS) in fifth-generation (5G) wireless networks. Recent advances in 5G New Radio (NR) technology holds promise for very high-precision positioning services. Yet, challenges arise due to diverse types of numerology and massive connected devices. This paper presents a novel approach to improve positioning precision within a 5G NR framework with comb patterns on time-frequency resource mapping. We then formulate an optimization problem aimed at minimizing the maximum users' positioning error in an intelligent reflected surface (IRS)-assisted 5G network by controlling the user-anchor association, numerology-related selection, IRS's reflecting elements, privacy protection level, and transmit power. To address the non-convex nature of the underlying mixed-integer non-convex problem (MINLP), we propose an efficient algorithm that combines optimization, matching, and learning techniques. Through extensive numerical experiments, we demonstrate the effectiveness of our proposed algorithm in minimizing positioning errors compared to conventional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信