{"title":"KANtrol:用于解决多维和分数最优控制问题的物理信息型科尔莫戈罗夫-阿诺德网络框架","authors":"Alireza Afzal Aghaei","doi":"arxiv-2409.06649","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the KANtrol framework, which utilizes\nKolmogorov-Arnold Networks (KANs) to solve optimal control problems involving\ncontinuous time variables. We explain how Gaussian quadrature can be employed\nto approximate the integral parts within the problem, particularly for\nintegro-differential state equations. We also demonstrate how automatic\ndifferentiation is utilized to compute exact derivatives for integer-order\ndynamics, while for fractional derivatives of non-integer order, we employ\nmatrix-vector product discretization within the KAN framework. We tackle\nmulti-dimensional problems, including the optimal control of a 2D heat partial\ndifferential equation. The results of our simulations, which cover both forward\nand parameter identification problems, show that the KANtrol framework\noutperforms classical MLPs in terms of accuracy and efficiency.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KANtrol: A Physics-Informed Kolmogorov-Arnold Network Framework for Solving Multi-Dimensional and Fractional Optimal Control Problems\",\"authors\":\"Alireza Afzal Aghaei\",\"doi\":\"arxiv-2409.06649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the KANtrol framework, which utilizes\\nKolmogorov-Arnold Networks (KANs) to solve optimal control problems involving\\ncontinuous time variables. We explain how Gaussian quadrature can be employed\\nto approximate the integral parts within the problem, particularly for\\nintegro-differential state equations. We also demonstrate how automatic\\ndifferentiation is utilized to compute exact derivatives for integer-order\\ndynamics, while for fractional derivatives of non-integer order, we employ\\nmatrix-vector product discretization within the KAN framework. We tackle\\nmulti-dimensional problems, including the optimal control of a 2D heat partial\\ndifferential equation. The results of our simulations, which cover both forward\\nand parameter identification problems, show that the KANtrol framework\\noutperforms classical MLPs in terms of accuracy and efficiency.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了 KANtrol 框架,该框架利用 Kolmogorov-Arnold 网络(KAN)来解决涉及连续时间变量的最优控制问题。我们解释了如何利用高斯正交来逼近问题中的积分部分,特别是对于积分微分状态方程。我们还演示了如何利用自动微分来计算整数阶动力学的精确导数,而对于非整数阶的分数导数,我们则在 KAN 框架内采用矩阵向量积离散化。我们解决了多维问题,包括二维热偏微分方程的优化控制。模拟结果表明,KAN 控制框架在精度和效率方面都优于经典 MLP。
KANtrol: A Physics-Informed Kolmogorov-Arnold Network Framework for Solving Multi-Dimensional and Fractional Optimal Control Problems
In this paper, we introduce the KANtrol framework, which utilizes
Kolmogorov-Arnold Networks (KANs) to solve optimal control problems involving
continuous time variables. We explain how Gaussian quadrature can be employed
to approximate the integral parts within the problem, particularly for
integro-differential state equations. We also demonstrate how automatic
differentiation is utilized to compute exact derivatives for integer-order
dynamics, while for fractional derivatives of non-integer order, we employ
matrix-vector product discretization within the KAN framework. We tackle
multi-dimensional problems, including the optimal control of a 2D heat partial
differential equation. The results of our simulations, which cover both forward
and parameter identification problems, show that the KANtrol framework
outperforms classical MLPs in terms of accuracy and efficiency.