通过迭代网格细化实现航空声学的双级正则化

Christian Aarset, Tram Thi Ngoc Nguyen
{"title":"通过迭代网格细化实现航空声学的双级正则化","authors":"Christian Aarset, Tram Thi Ngoc Nguyen","doi":"arxiv-2409.06854","DOIUrl":null,"url":null,"abstract":"In this work, we illustrate the connection between adaptive mesh refinement\nfor finite element discretized PDEs and the recently developed \\emph{bi-level\nregularization algorithm}. By adaptive mesh refinement according to data noise,\nregularization effect and convergence are immediate consequences. We moreover\ndemonstrate its numerical advantages to the classical Landweber algorithm in\nterm of time and reconstruction quality for the example of the Helmholtz\nequation in an aeroacoustic setting.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi-level regularization via iterative mesh refinement for aeroacoustics\",\"authors\":\"Christian Aarset, Tram Thi Ngoc Nguyen\",\"doi\":\"arxiv-2409.06854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we illustrate the connection between adaptive mesh refinement\\nfor finite element discretized PDEs and the recently developed \\\\emph{bi-level\\nregularization algorithm}. By adaptive mesh refinement according to data noise,\\nregularization effect and convergence are immediate consequences. We moreover\\ndemonstrate its numerical advantages to the classical Landweber algorithm in\\nterm of time and reconstruction quality for the example of the Helmholtz\\nequation in an aeroacoustic setting.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们阐述了自适应网格细化有限元离散 PDE 与最近开发的 \emph{bi-levelregularization algithm} 之间的联系。通过根据数据噪声进行自适应网格细化,正则化效果和收敛性是立竿见影的。此外,我们还以航空声学中的 Helmholtzequation 为例,在时间和重构质量方面证明了该算法在数值上优于经典的 Landweber 算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bi-level regularization via iterative mesh refinement for aeroacoustics
In this work, we illustrate the connection between adaptive mesh refinement for finite element discretized PDEs and the recently developed \emph{bi-level regularization algorithm}. By adaptive mesh refinement according to data noise, regularization effect and convergence are immediate consequences. We moreover demonstrate its numerical advantages to the classical Landweber algorithm in term of time and reconstruction quality for the example of the Helmholtz equation in an aeroacoustic setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信