{"title":"波方程的可观测性估计及其在半线性波方程的诺伊曼边界可控性中的应用","authors":"Sue Claret","doi":"arxiv-2409.07214","DOIUrl":null,"url":null,"abstract":"We give a boundary observability result for a $1$d wave equation with a\npotential. We then deduce with a Schauder fixed-point argument the existence of\na Neumann boundary control for a semi-linear wave equation $\\partial_{tt}y -\n\\partial_{xx}y + f(y) = 0$ under an optimal growth assumption at infinity on\n$f$ of the type $s\\ln^2s$. Moreover, assuming additional assumption on $f'$, we\nconstruct a minimizing sequence which converges to a control. Numerical\nexperiments illustrate the results. This work extends to the Neumann boundary\ncontrol case the work of Zuazua in $1993$ and the work of M\\\"unch and Tr\\'elat\nin $2022$.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An observability estimate for the wave equation and applications to the Neumann boundary controllability for semi-linear wave equations\",\"authors\":\"Sue Claret\",\"doi\":\"arxiv-2409.07214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a boundary observability result for a $1$d wave equation with a\\npotential. We then deduce with a Schauder fixed-point argument the existence of\\na Neumann boundary control for a semi-linear wave equation $\\\\partial_{tt}y -\\n\\\\partial_{xx}y + f(y) = 0$ under an optimal growth assumption at infinity on\\n$f$ of the type $s\\\\ln^2s$. Moreover, assuming additional assumption on $f'$, we\\nconstruct a minimizing sequence which converges to a control. Numerical\\nexperiments illustrate the results. This work extends to the Neumann boundary\\ncontrol case the work of Zuazua in $1993$ and the work of M\\\\\\\"unch and Tr\\\\'elat\\nin $2022$.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An observability estimate for the wave equation and applications to the Neumann boundary controllability for semi-linear wave equations
We give a boundary observability result for a $1$d wave equation with a
potential. We then deduce with a Schauder fixed-point argument the existence of
a Neumann boundary control for a semi-linear wave equation $\partial_{tt}y -
\partial_{xx}y + f(y) = 0$ under an optimal growth assumption at infinity on
$f$ of the type $s\ln^2s$. Moreover, assuming additional assumption on $f'$, we
construct a minimizing sequence which converges to a control. Numerical
experiments illustrate the results. This work extends to the Neumann boundary
control case the work of Zuazua in $1993$ and the work of M\"unch and Tr\'elat
in $2022$.