为 GMRES 学习不完全因式分解预处理器

Paul Häusner, Aleix Nieto Juscafresa, Jens Sjölund
{"title":"为 GMRES 学习不完全因式分解预处理器","authors":"Paul Häusner, Aleix Nieto Juscafresa, Jens Sjölund","doi":"arxiv-2409.08262","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a data-driven approach to generate incomplete LU\nfactorizations of large-scale sparse matrices. The learned approximate\nfactorization is utilized as a preconditioner for the corresponding linear\nequation system in the GMRES method. Incomplete factorization methods are one\nof the most commonly applied algebraic preconditioners for sparse linear\nequation systems and are able to speed up the convergence of Krylov subspace\nmethods. However, they are sensitive to hyper-parameters and might suffer from\nnumerical breakdown or lead to slow convergence when not properly applied. We\nreplace the typically hand-engineered algorithms with a graph neural network\nbased approach that is trained against data to predict an approximate\nfactorization. This allows us to learn preconditioners tailored for a specific\nproblem distribution. We analyze and empirically evaluate different loss\nfunctions to train the learned preconditioners and show their effectiveness to\ndecrease the number of GMRES iterations and improve the spectral properties on\nour synthetic dataset. The code is available at\nhttps://github.com/paulhausner/neural-incomplete-factorization.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning incomplete factorization preconditioners for GMRES\",\"authors\":\"Paul Häusner, Aleix Nieto Juscafresa, Jens Sjölund\",\"doi\":\"arxiv-2409.08262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a data-driven approach to generate incomplete LU\\nfactorizations of large-scale sparse matrices. The learned approximate\\nfactorization is utilized as a preconditioner for the corresponding linear\\nequation system in the GMRES method. Incomplete factorization methods are one\\nof the most commonly applied algebraic preconditioners for sparse linear\\nequation systems and are able to speed up the convergence of Krylov subspace\\nmethods. However, they are sensitive to hyper-parameters and might suffer from\\nnumerical breakdown or lead to slow convergence when not properly applied. We\\nreplace the typically hand-engineered algorithms with a graph neural network\\nbased approach that is trained against data to predict an approximate\\nfactorization. This allows us to learn preconditioners tailored for a specific\\nproblem distribution. We analyze and empirically evaluate different loss\\nfunctions to train the learned preconditioners and show their effectiveness to\\ndecrease the number of GMRES iterations and improve the spectral properties on\\nour synthetic dataset. The code is available at\\nhttps://github.com/paulhausner/neural-incomplete-factorization.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们开发了一种数据驱动方法,用于生成大规模稀疏矩阵的不完整 LU 因子化。学习到的近似因式分解被用作 GMRES 方法中相应线性方程组系统的预处理。不完全因子化方法是稀疏线性方程组最常用的代数预处理方法之一,能够加快 Krylov 子空间方法的收敛速度。然而,它们对超参数很敏感,如果应用不当,可能会出现数值崩溃或导致收敛速度缓慢。我们用基于图神经网络的方法取代了传统的手工设计算法,这种方法通过数据训练来预测近似因式分解。这样,我们就能学习为特定问题分布量身定制的预处理器。我们分析和实证评估了不同的损失函数,以训练学习到的预处理器,并在我们的合成数据集上展示了它们在减少 GMRES 迭代次数和改善频谱特性方面的有效性。代码可在https://github.com/paulhausner/neural-incomplete-factorization。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning incomplete factorization preconditioners for GMRES
In this paper, we develop a data-driven approach to generate incomplete LU factorizations of large-scale sparse matrices. The learned approximate factorization is utilized as a preconditioner for the corresponding linear equation system in the GMRES method. Incomplete factorization methods are one of the most commonly applied algebraic preconditioners for sparse linear equation systems and are able to speed up the convergence of Krylov subspace methods. However, they are sensitive to hyper-parameters and might suffer from numerical breakdown or lead to slow convergence when not properly applied. We replace the typically hand-engineered algorithms with a graph neural network based approach that is trained against data to predict an approximate factorization. This allows us to learn preconditioners tailored for a specific problem distribution. We analyze and empirically evaluate different loss functions to train the learned preconditioners and show their effectiveness to decrease the number of GMRES iterations and improve the spectral properties on our synthetic dataset. The code is available at https://github.com/paulhausner/neural-incomplete-factorization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信