双时标准随机逼近的马尔可夫基础扩展版

Caio Kalil Lauand, Sean Meyn
{"title":"双时标准随机逼近的马尔可夫基础扩展版","authors":"Caio Kalil Lauand, Sean Meyn","doi":"arxiv-2409.07842","DOIUrl":null,"url":null,"abstract":"Many machine learning and optimization algorithms can be cast as instances of\nstochastic approximation (SA). The convergence rate of these algorithms is\nknown to be slow, with the optimal mean squared error (MSE) of order\n$O(n^{-1})$. In prior work it was shown that MSE bounds approaching $O(n^{-4})$\ncan be achieved through the framework of quasi-stochastic approximation (QSA);\nessentially SA with careful choice of deterministic exploration. These results\nare extended to two time-scale algorithms, as found in policy gradient methods\nof reinforcement learning and extremum seeking control. The extensions are made\npossible in part by a new approach to analysis, allowing for the interpretation\nof two timescale algorithms as instances of single timescale QSA, made possible\nby the theory of negative Lyapunov exponents for QSA. The general theory is\nillustrated with applications to extremum seeking control (ESC).","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Markovian Foundations for Quasi-Stochastic Approximation in Two Timescales: Extended Version\",\"authors\":\"Caio Kalil Lauand, Sean Meyn\",\"doi\":\"arxiv-2409.07842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many machine learning and optimization algorithms can be cast as instances of\\nstochastic approximation (SA). The convergence rate of these algorithms is\\nknown to be slow, with the optimal mean squared error (MSE) of order\\n$O(n^{-1})$. In prior work it was shown that MSE bounds approaching $O(n^{-4})$\\ncan be achieved through the framework of quasi-stochastic approximation (QSA);\\nessentially SA with careful choice of deterministic exploration. These results\\nare extended to two time-scale algorithms, as found in policy gradient methods\\nof reinforcement learning and extremum seeking control. The extensions are made\\npossible in part by a new approach to analysis, allowing for the interpretation\\nof two timescale algorithms as instances of single timescale QSA, made possible\\nby the theory of negative Lyapunov exponents for QSA. The general theory is\\nillustrated with applications to extremum seeking control (ESC).\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多机器学习和优化算法都可以看作是随机逼近(SA)的实例。众所周知,这些算法的收敛速度很慢,最佳均方误差(MSE)为 $O(n^{-1})。之前的研究表明,通过准随机逼近(QSA)框架,可以实现接近 $O(n^{-4})$的 MSE 值;QSA 本质上是在谨慎选择确定性探索的情况下实现的 SA。这些结果被扩展到两种时间尺度的算法,如强化学习和极值寻优控制的策略梯度法。这些扩展部分得益于一种新的分析方法,它允许将双时间尺度算法解释为单时间尺度 QSA 的实例,QSA 的负 Lyapunov 指数理论使之成为可能。该一般理论在极值寻优控制(ESC)中的应用也说明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Markovian Foundations for Quasi-Stochastic Approximation in Two Timescales: Extended Version
Many machine learning and optimization algorithms can be cast as instances of stochastic approximation (SA). The convergence rate of these algorithms is known to be slow, with the optimal mean squared error (MSE) of order $O(n^{-1})$. In prior work it was shown that MSE bounds approaching $O(n^{-4})$ can be achieved through the framework of quasi-stochastic approximation (QSA); essentially SA with careful choice of deterministic exploration. These results are extended to two time-scale algorithms, as found in policy gradient methods of reinforcement learning and extremum seeking control. The extensions are made possible in part by a new approach to analysis, allowing for the interpretation of two timescale algorithms as instances of single timescale QSA, made possible by the theory of negative Lyapunov exponents for QSA. The general theory is illustrated with applications to extremum seeking control (ESC).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信