线性优化及其扩展中的对偶理论 -- 正式验证

Martin Dvorak, Vladimir Kolmogorov
{"title":"线性优化及其扩展中的对偶理论 -- 正式验证","authors":"Martin Dvorak, Vladimir Kolmogorov","doi":"arxiv-2409.08119","DOIUrl":null,"url":null,"abstract":"Farkas established that a system of linear inequalities has a solution if and\nonly if we cannot obtain a contradiction by taking a linear combination of the\ninequalities. We state and formally prove several Farkas-like theorems over\nlinearly ordered fields in Lean 4. Furthermore, we extend duality theory to the\ncase when some coefficients are allowed to take ``infinite values''.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Duality theory in linear optimization and its extensions -- formally verified\",\"authors\":\"Martin Dvorak, Vladimir Kolmogorov\",\"doi\":\"arxiv-2409.08119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Farkas established that a system of linear inequalities has a solution if and\\nonly if we cannot obtain a contradiction by taking a linear combination of the\\ninequalities. We state and formally prove several Farkas-like theorems over\\nlinearly ordered fields in Lean 4. Furthermore, we extend duality theory to the\\ncase when some coefficients are allowed to take ``infinite values''.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

法卡斯认为,线性不等式系统有一个解,前提是我们不能通过线性组合得到矛盾。我们在精益 4 中阐述并正式证明了几个类似法卡斯的线性有序域定理。此外,我们还将对偶理论扩展到允许某些系数取 "无限值 "的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Duality theory in linear optimization and its extensions -- formally verified
Farkas established that a system of linear inequalities has a solution if and only if we cannot obtain a contradiction by taking a linear combination of the inequalities. We state and formally prove several Farkas-like theorems over linearly ordered fields in Lean 4. Furthermore, we extend duality theory to the case when some coefficients are allowed to take ``infinite values''.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信