Morgana M. A. da Rosa, Eduardo A. C. da Costa, Rafael Soares, Sergio Bampi
{"title":"探索用于精度和能量质量 VLSI 水印系统设计的离散哈小波和余弦变换","authors":"Morgana M. A. da Rosa, Eduardo A. C. da Costa, Rafael Soares, Sergio Bampi","doi":"10.1007/s00034-024-02802-2","DOIUrl":null,"url":null,"abstract":"<p>Digital watermarking conceals data within host images to safeguard against unauthorized distribution of multimedia content. It offers content protection and anti-piracy measures, maintaining content quality by embedding invisible information. This process involves inserting and extracting watermarks. We introduce a robust algorithm, combining discrete Haar wavelet transform (DHWT) and discrete cosine transform (DCT), yielding effective watermarking with high resistance to extraction without data loss. This combination of transforms represents a hybrid approach that we call HyDHWCT in this work. Evaluations reveal our approach’s superior accuracy compared to state-of-the-art methods. Our hardware watermarking solution excels in robustness and energy efficiency, even under diverse attack scenarios. FPGA and ASIC assessments show our HyDHWCT’s exceptional area and power performance, with the algorithm achieving a lossless watermark extraction (NC = 1), outperforming prior methods in accuracy-quality, and energy-, and area-savings (approximately <span>\\(2.621\\times \\)</span> and <span>\\(1.174\\times \\)</span>, respectively). Accuracy-quality results confirm a perfect extraction rate (NC = 1), ensuring 100% accuracy in watermark extraction.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":"98 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Discrete Haar Wavelet and Cosine Transforms for Accuracy-and Energy-Quality VLSI Watermarking Systems Design\",\"authors\":\"Morgana M. A. da Rosa, Eduardo A. C. da Costa, Rafael Soares, Sergio Bampi\",\"doi\":\"10.1007/s00034-024-02802-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Digital watermarking conceals data within host images to safeguard against unauthorized distribution of multimedia content. It offers content protection and anti-piracy measures, maintaining content quality by embedding invisible information. This process involves inserting and extracting watermarks. We introduce a robust algorithm, combining discrete Haar wavelet transform (DHWT) and discrete cosine transform (DCT), yielding effective watermarking with high resistance to extraction without data loss. This combination of transforms represents a hybrid approach that we call HyDHWCT in this work. Evaluations reveal our approach’s superior accuracy compared to state-of-the-art methods. Our hardware watermarking solution excels in robustness and energy efficiency, even under diverse attack scenarios. FPGA and ASIC assessments show our HyDHWCT’s exceptional area and power performance, with the algorithm achieving a lossless watermark extraction (NC = 1), outperforming prior methods in accuracy-quality, and energy-, and area-savings (approximately <span>\\\\(2.621\\\\times \\\\)</span> and <span>\\\\(1.174\\\\times \\\\)</span>, respectively). Accuracy-quality results confirm a perfect extraction rate (NC = 1), ensuring 100% accuracy in watermark extraction.</p>\",\"PeriodicalId\":10227,\"journal\":{\"name\":\"Circuits, Systems and Signal Processing\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuits, Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00034-024-02802-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02802-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Exploring Discrete Haar Wavelet and Cosine Transforms for Accuracy-and Energy-Quality VLSI Watermarking Systems Design
Digital watermarking conceals data within host images to safeguard against unauthorized distribution of multimedia content. It offers content protection and anti-piracy measures, maintaining content quality by embedding invisible information. This process involves inserting and extracting watermarks. We introduce a robust algorithm, combining discrete Haar wavelet transform (DHWT) and discrete cosine transform (DCT), yielding effective watermarking with high resistance to extraction without data loss. This combination of transforms represents a hybrid approach that we call HyDHWCT in this work. Evaluations reveal our approach’s superior accuracy compared to state-of-the-art methods. Our hardware watermarking solution excels in robustness and energy efficiency, even under diverse attack scenarios. FPGA and ASIC assessments show our HyDHWCT’s exceptional area and power performance, with the algorithm achieving a lossless watermark extraction (NC = 1), outperforming prior methods in accuracy-quality, and energy-, and area-savings (approximately \(2.621\times \) and \(1.174\times \), respectively). Accuracy-quality results confirm a perfect extraction rate (NC = 1), ensuring 100% accuracy in watermark extraction.
期刊介绍:
Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area.
The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing.
The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published.
Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.