{"title":"采用连续逼近寄存器 ADC 辅助模拟反馈技术的离散时间三角积分调制器","authors":"Hsin-Liang Chen, Hsiao-Hsing Chou, Hong-Ming Chiu, Hung-Chi Chang, Jen-Shiun Chiang","doi":"10.1007/s00034-024-02832-w","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a delta-sigma modulator (DSM) for audio band applications with low-area cost and high-resolution performance characteristics. The proposed circuit is implemented by discrete-time switched capacitor circuits. It employs an assisted 6-bit successive approximation register (SAR) analog-to-digital converter (ADC) as the quantizer. Most importantly, it combines and shares the resistive digital-to-analog (DAC) in DSM and SAR ADC. Therefore, it can achieve high-efficiency advantages and reduce the chip layout cost. After all, the chip area is only 0.096 mm<sup>2</sup> by the 0.18 um 1P6M CMOS process. It achieves 96 dB dynamic range (DR), 83.1 dB signal to noise and distortion ratio (SNDR), and 93.4 dB signal to noise ratio (SNR) with 25 kHz signal bandwidth and oversampling ratio (OSR) of 64.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":"33 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete-Time Delta-Sigma Modulator with Successively Approximating Register ADC Assisted Analog Feedback Technique\",\"authors\":\"Hsin-Liang Chen, Hsiao-Hsing Chou, Hong-Ming Chiu, Hung-Chi Chang, Jen-Shiun Chiang\",\"doi\":\"10.1007/s00034-024-02832-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a delta-sigma modulator (DSM) for audio band applications with low-area cost and high-resolution performance characteristics. The proposed circuit is implemented by discrete-time switched capacitor circuits. It employs an assisted 6-bit successive approximation register (SAR) analog-to-digital converter (ADC) as the quantizer. Most importantly, it combines and shares the resistive digital-to-analog (DAC) in DSM and SAR ADC. Therefore, it can achieve high-efficiency advantages and reduce the chip layout cost. After all, the chip area is only 0.096 mm<sup>2</sup> by the 0.18 um 1P6M CMOS process. It achieves 96 dB dynamic range (DR), 83.1 dB signal to noise and distortion ratio (SNDR), and 93.4 dB signal to noise ratio (SNR) with 25 kHz signal bandwidth and oversampling ratio (OSR) of 64.</p>\",\"PeriodicalId\":10227,\"journal\":{\"name\":\"Circuits, Systems and Signal Processing\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuits, Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00034-024-02832-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02832-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Discrete-Time Delta-Sigma Modulator with Successively Approximating Register ADC Assisted Analog Feedback Technique
This paper proposes a delta-sigma modulator (DSM) for audio band applications with low-area cost and high-resolution performance characteristics. The proposed circuit is implemented by discrete-time switched capacitor circuits. It employs an assisted 6-bit successive approximation register (SAR) analog-to-digital converter (ADC) as the quantizer. Most importantly, it combines and shares the resistive digital-to-analog (DAC) in DSM and SAR ADC. Therefore, it can achieve high-efficiency advantages and reduce the chip layout cost. After all, the chip area is only 0.096 mm2 by the 0.18 um 1P6M CMOS process. It achieves 96 dB dynamic range (DR), 83.1 dB signal to noise and distortion ratio (SNDR), and 93.4 dB signal to noise ratio (SNR) with 25 kHz signal bandwidth and oversampling ratio (OSR) of 64.
期刊介绍:
Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area.
The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing.
The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published.
Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.