矩形有限自由概率中的累积量和β变形奇异值

Cesar Cuenca
{"title":"矩形有限自由概率中的累积量和β变形奇异值","authors":"Cesar Cuenca","doi":"arxiv-2409.04305","DOIUrl":null,"url":null,"abstract":"Motivated by the $(q,\\gamma)$-cumulants, introduced by Xu [arXiv:2303.13812]\nto study $\\beta$-deformed singular values of random matrices, we define the\n$(n,d)$-rectangular cumulants for polynomials of degree $d$ and prove several\nmoment-cumulant formulas by elementary algebraic manipulations; the proof\nnaturally leads to quantum analogues of the formulas. We further show that the\n$(n,d)$-rectangular cumulants linearize the $(n,d)$-rectangular convolution\nfrom Finite Free Probability and that they converge to the $q$-rectangular free\ncumulants from Free Probability in the regime where $d\\to\\infty$, $1+n/d\\to\nq\\in[1,\\infty)$. As an application, we employ our formulas to study limits of\nsymmetric empirical root distributions of sequences of polynomials with\nnonnegative roots. One of our results is akin to a theorem of Kabluchko\n[arXiv:2203.05533] and shows that applying the operator\n$\\exp(-\\frac{s^2}{n}x^{-n}D_xx^{n+1}D_x)$, where $s>0$, asymptotically amounts\nto taking the rectangular free convolution with the rectangular Gaussian\ndistribution of variance $qs^2/(q-1)$.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cumulants in rectangular finite free probability and beta-deformed singular values\",\"authors\":\"Cesar Cuenca\",\"doi\":\"arxiv-2409.04305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the $(q,\\\\gamma)$-cumulants, introduced by Xu [arXiv:2303.13812]\\nto study $\\\\beta$-deformed singular values of random matrices, we define the\\n$(n,d)$-rectangular cumulants for polynomials of degree $d$ and prove several\\nmoment-cumulant formulas by elementary algebraic manipulations; the proof\\nnaturally leads to quantum analogues of the formulas. We further show that the\\n$(n,d)$-rectangular cumulants linearize the $(n,d)$-rectangular convolution\\nfrom Finite Free Probability and that they converge to the $q$-rectangular free\\ncumulants from Free Probability in the regime where $d\\\\to\\\\infty$, $1+n/d\\\\to\\nq\\\\in[1,\\\\infty)$. As an application, we employ our formulas to study limits of\\nsymmetric empirical root distributions of sequences of polynomials with\\nnonnegative roots. One of our results is akin to a theorem of Kabluchko\\n[arXiv:2203.05533] and shows that applying the operator\\n$\\\\exp(-\\\\frac{s^2}{n}x^{-n}D_xx^{n+1}D_x)$, where $s>0$, asymptotically amounts\\nto taking the rectangular free convolution with the rectangular Gaussian\\ndistribution of variance $qs^2/(q-1)$.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受许[arXiv:2303.13812]为研究随机矩阵的$\beta$变形奇异值而引入的$(q,\gamma)$累积量的启发,我们定义了度数为$d$的多项式的$(n,d)$矩形累积量,并通过基本代数操作证明了几个矩形累积量公式;证明自然地引出了公式的量子类比。我们进一步证明了$(n,d)$-矩形积线性化了来自有限自由概率的$(n,d)$-矩形卷积,并且在$d\to\infty$, $1+n/d\toq\in[1,\infty)$ 的情况下,它们收敛于来自自由概率的$q$-矩形自由积。作为应用,我们用我们的公式来研究具有负根的多项式序列的对称经验根分布的极限。我们的一个结果类似于卡布卢奇科的一个定理[arXiv:2203.05533],表明应用算子$exp(-\frac{s^2}{n}x^{-n}D_xx^{n+1}D_x)$,其中$s>0$,近似等价于取方差为$qs^2/(q-1)$的矩形高斯分布的矩形自由卷积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cumulants in rectangular finite free probability and beta-deformed singular values
Motivated by the $(q,\gamma)$-cumulants, introduced by Xu [arXiv:2303.13812] to study $\beta$-deformed singular values of random matrices, we define the $(n,d)$-rectangular cumulants for polynomials of degree $d$ and prove several moment-cumulant formulas by elementary algebraic manipulations; the proof naturally leads to quantum analogues of the formulas. We further show that the $(n,d)$-rectangular cumulants linearize the $(n,d)$-rectangular convolution from Finite Free Probability and that they converge to the $q$-rectangular free cumulants from Free Probability in the regime where $d\to\infty$, $1+n/d\to q\in[1,\infty)$. As an application, we employ our formulas to study limits of symmetric empirical root distributions of sequences of polynomials with nonnegative roots. One of our results is akin to a theorem of Kabluchko [arXiv:2203.05533] and shows that applying the operator $\exp(-\frac{s^2}{n}x^{-n}D_xx^{n+1}D_x)$, where $s>0$, asymptotically amounts to taking the rectangular free convolution with the rectangular Gaussian distribution of variance $qs^2/(q-1)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信