加权亚分数布朗运动过程:性质与概括

Ramirez-Gonzalez Jose Hermenegildo, Sun Ying
{"title":"加权亚分数布朗运动过程:性质与概括","authors":"Ramirez-Gonzalez Jose Hermenegildo, Sun Ying","doi":"arxiv-2409.04798","DOIUrl":null,"url":null,"abstract":"In this paper, we present several path properties, simulations, inferences,\nand generalizations of the weighted sub-fractional Brownian motion. A primary\nfocus is on the derivation of the covariance function $R_{f,b}(s,t)$ for the\nweighted sub-fractional Brownian motion, defined as: \\begin{equation*}\nR_{f,b}(s,t) = \\frac{1}{1-b} \\int_{0}^{s \\wedge t} f(r) \\left[(s-r)^{b} +\n(t-r)^{b} - (t+s-2r)^{b}\\right] dr, \\end{equation*} where $f:\\mathbb{R}_{+} \\to\n\\mathbb{R}_{+}$ is a measurable function and $b\\in [0,1)\\cup(1,2]$. This\ncovariance function $R_{f,b}(s,t)$ is used to define the centered Gaussian\nprocess $\\zeta_{t,f,b}$, which is the weighted sub-fractional Brownian motion.\nFurthermore, if there is a positive constant $c$ and $a \\in (-1,\\infty)$ such\nthat $0 \\leq f(u) \\leq c u^{a}$ on $[0,T]$ for some $T>0$. Then, for $b \\in\n(0,1)$, $\\zeta_{t,f,b}$ exhibits infinite variation and zero quadratic\nvariation, making it a non-semi-martingale. On the other hand, for $b \\in\n(1,2]$, $\\zeta_{t,f,b}$ is a continuous process of finite variation and thus a\nsemi-martingale and for $b=0$ the process $\\zeta_{t,f,0}$ is a square\nintegrable continuous martingale. We also provide inferential studies using\nmaximum likelihood estimation and perform simulations comparing various\nnumerical methods for their efficiency in computing the finite-dimensional\ndistributions of $\\zeta_{t,f,b}$. Additionally, we extend the weighted\nsub-fractional Brownian motion to $\\mathbb{R}^d$ by defining new covariance\nstructures for measurable, bounded sets in $\\mathbb{R}^d$. Finally, we define a\nstochastic integral with respect to $\\zeta_{t,f,b}$ and introduce both the\nweighted sub-fractional Ornstein-Uhlenbeck process and the geometric weighted\nsub-fractional Brownian motion.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Sub-fractional Brownian Motion Process: Properties and Generalizations\",\"authors\":\"Ramirez-Gonzalez Jose Hermenegildo, Sun Ying\",\"doi\":\"arxiv-2409.04798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present several path properties, simulations, inferences,\\nand generalizations of the weighted sub-fractional Brownian motion. A primary\\nfocus is on the derivation of the covariance function $R_{f,b}(s,t)$ for the\\nweighted sub-fractional Brownian motion, defined as: \\\\begin{equation*}\\nR_{f,b}(s,t) = \\\\frac{1}{1-b} \\\\int_{0}^{s \\\\wedge t} f(r) \\\\left[(s-r)^{b} +\\n(t-r)^{b} - (t+s-2r)^{b}\\\\right] dr, \\\\end{equation*} where $f:\\\\mathbb{R}_{+} \\\\to\\n\\\\mathbb{R}_{+}$ is a measurable function and $b\\\\in [0,1)\\\\cup(1,2]$. This\\ncovariance function $R_{f,b}(s,t)$ is used to define the centered Gaussian\\nprocess $\\\\zeta_{t,f,b}$, which is the weighted sub-fractional Brownian motion.\\nFurthermore, if there is a positive constant $c$ and $a \\\\in (-1,\\\\infty)$ such\\nthat $0 \\\\leq f(u) \\\\leq c u^{a}$ on $[0,T]$ for some $T>0$. Then, for $b \\\\in\\n(0,1)$, $\\\\zeta_{t,f,b}$ exhibits infinite variation and zero quadratic\\nvariation, making it a non-semi-martingale. On the other hand, for $b \\\\in\\n(1,2]$, $\\\\zeta_{t,f,b}$ is a continuous process of finite variation and thus a\\nsemi-martingale and for $b=0$ the process $\\\\zeta_{t,f,0}$ is a square\\nintegrable continuous martingale. We also provide inferential studies using\\nmaximum likelihood estimation and perform simulations comparing various\\nnumerical methods for their efficiency in computing the finite-dimensional\\ndistributions of $\\\\zeta_{t,f,b}$. Additionally, we extend the weighted\\nsub-fractional Brownian motion to $\\\\mathbb{R}^d$ by defining new covariance\\nstructures for measurable, bounded sets in $\\\\mathbb{R}^d$. Finally, we define a\\nstochastic integral with respect to $\\\\zeta_{t,f,b}$ and introduce both the\\nweighted sub-fractional Ornstein-Uhlenbeck process and the geometric weighted\\nsub-fractional Brownian motion.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了加权亚分数布朗运动的若干路径特性、模拟、推论和概括。主要重点是推导加权亚分数布朗运动的协方差函数 $R_{f,b}(s,t)$,其定义如下:\begin{equation*}R_{f,b}(s,t) = \frac{1}{1-b}\int_{0}^{s \wedge t} f(r) \left[(s-r)^{b} +(t-r)^{b} - (t+s-2r)^{b}\right] dr, \end{equation*} 其中 $f:\mathbb{R}_{+} \to\mathbb{R}_{+}$ 是一个可测函数,$b\in [0,1)\cup(1,2]$.这个协方差函数 $R_{f,b}(s,t)$ 用于定义居中高斯过程 $\zeta_{t,f,b}$,即加权子分数布朗运动。此外,如果存在一个正常数 $c$ 和 $a \in (-1,\infty)$ ,使得 $0 \leq f(u) \leq c u^{a}$ on $[0,T]$ for some $T>0$。那么,对于 $b \in(0,1)$,$\zeta_{t,f,b}$ 表现出无限变化和零二次变化,使其成为一个非半马勒。另一方面,当 $b 在(1,2)$ 时,$\zeta_{t,f,b}$ 是一个变化有限的连续过程,因此是一个半平稳过程;当 $b=0$ 时,$\zeta_{t,f,0}$ 是一个方整的连续平稳过程。我们还利用最大似然估计进行了推理研究,并模拟比较了各种数值方法在计算 $\zeta_{t,f,b}$ 的有限维分布时的效率。此外,我们通过定义 $\mathbb{R}^d$ 中可测量的有界集的新协方差结构,将加权次分数布朗运动扩展到 $\mathbb{R}^d$。最后,我们定义了与 $\zeta_{t,f,b}$ 有关的星状积分,并引入了加权亚分数奥恩斯坦-乌伦贝克过程和几何加权亚分数布朗运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted Sub-fractional Brownian Motion Process: Properties and Generalizations
In this paper, we present several path properties, simulations, inferences, and generalizations of the weighted sub-fractional Brownian motion. A primary focus is on the derivation of the covariance function $R_{f,b}(s,t)$ for the weighted sub-fractional Brownian motion, defined as: \begin{equation*} R_{f,b}(s,t) = \frac{1}{1-b} \int_{0}^{s \wedge t} f(r) \left[(s-r)^{b} + (t-r)^{b} - (t+s-2r)^{b}\right] dr, \end{equation*} where $f:\mathbb{R}_{+} \to \mathbb{R}_{+}$ is a measurable function and $b\in [0,1)\cup(1,2]$. This covariance function $R_{f,b}(s,t)$ is used to define the centered Gaussian process $\zeta_{t,f,b}$, which is the weighted sub-fractional Brownian motion. Furthermore, if there is a positive constant $c$ and $a \in (-1,\infty)$ such that $0 \leq f(u) \leq c u^{a}$ on $[0,T]$ for some $T>0$. Then, for $b \in (0,1)$, $\zeta_{t,f,b}$ exhibits infinite variation and zero quadratic variation, making it a non-semi-martingale. On the other hand, for $b \in (1,2]$, $\zeta_{t,f,b}$ is a continuous process of finite variation and thus a semi-martingale and for $b=0$ the process $\zeta_{t,f,0}$ is a square integrable continuous martingale. We also provide inferential studies using maximum likelihood estimation and perform simulations comparing various numerical methods for their efficiency in computing the finite-dimensional distributions of $\zeta_{t,f,b}$. Additionally, we extend the weighted sub-fractional Brownian motion to $\mathbb{R}^d$ by defining new covariance structures for measurable, bounded sets in $\mathbb{R}^d$. Finally, we define a stochastic integral with respect to $\zeta_{t,f,b}$ and introduce both the weighted sub-fractional Ornstein-Uhlenbeck process and the geometric weighted sub-fractional Brownian motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信