随机交映矩阵和超椭圆 $L$ 函数的迹矩

Alexei Entin, Noam Pirani
{"title":"随机交映矩阵和超椭圆 $L$ 函数的迹矩","authors":"Alexei Entin, Noam Pirani","doi":"arxiv-2409.04844","DOIUrl":null,"url":null,"abstract":"We study matrix integrals of the form\n$$\\int_{\\mathrm{USp(2n)}}\\prod_{j=1}^k\\mathrm{tr}(U^j)^{a_j}\\mathrm d U,$$\nwhere $a_1,\\ldots,a_r$ are natural numbers and integration is with respect to\nthe Haar probability measure. We obtain a compact formula (the number of terms\ndepends only on $\\sum a_j$ and not on $n,k$) for the above integral in the\nnon-Gaussian range $\\sum_{j=1}^kja_j\\le 4n+1$. This extends results of\nDiaconis-Shahshahani and Hughes-Rudnick who obtained a formula for the integral\nvalid in the (Gaussian) range $\\sum_{j=1}^kja_j\\le n$ and $\\sum_{j=1}^kja_j\\le\n2n+1$ respectively. We derive our formula using the connection between random\nsymplectic matrices and hyperelliptic $L$-functions over finite fields, given\nby an equidistribution result of Katz and Sarnak, and an evaluation of a\ncertain multiple character sum over the function field $\\mathbb F_q(x)$. We\napply our formula to study the linear statistics of eigenvalues of random\nunitary symplectic matrices in a narrow bandwidth sampling regime.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moments of traces of random symplectic matrices and hyperelliptic $L$-functions\",\"authors\":\"Alexei Entin, Noam Pirani\",\"doi\":\"arxiv-2409.04844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study matrix integrals of the form\\n$$\\\\int_{\\\\mathrm{USp(2n)}}\\\\prod_{j=1}^k\\\\mathrm{tr}(U^j)^{a_j}\\\\mathrm d U,$$\\nwhere $a_1,\\\\ldots,a_r$ are natural numbers and integration is with respect to\\nthe Haar probability measure. We obtain a compact formula (the number of terms\\ndepends only on $\\\\sum a_j$ and not on $n,k$) for the above integral in the\\nnon-Gaussian range $\\\\sum_{j=1}^kja_j\\\\le 4n+1$. This extends results of\\nDiaconis-Shahshahani and Hughes-Rudnick who obtained a formula for the integral\\nvalid in the (Gaussian) range $\\\\sum_{j=1}^kja_j\\\\le n$ and $\\\\sum_{j=1}^kja_j\\\\le\\n2n+1$ respectively. We derive our formula using the connection between random\\nsymplectic matrices and hyperelliptic $L$-functions over finite fields, given\\nby an equidistribution result of Katz and Sarnak, and an evaluation of a\\ncertain multiple character sum over the function field $\\\\mathbb F_q(x)$. We\\napply our formula to study the linear statistics of eigenvalues of random\\nunitary symplectic matrices in a narrow bandwidth sampling regime.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了形式为$$\int_{mathrm{USp(2n)}}\prod_{j=1}^k\mathrm{tr}(U^j)^{a_j}\mathrm d U的矩阵积分,$$其中$a_1,\ldots,a_r$为自然数,积分是关于哈氏概率度量的。我们得到了上述积分在非高斯范围内 $\sum_{j=1}^kja_j\le 4n+1$ 的紧凑公式(项数只取决于 $\sum a_j$,而不取决于 $n,k$)。这是对迪亚科尼斯-沙沙哈尼(Diaconis-Shahshahani)和休斯-鲁德尼克(Hughes-Rudnick)结果的扩展,他们分别得到了(高斯)范围内 $\sum_{j=1}^kja_j\le n$ 和 $\sum_{j=1}^kja_j\le 2n+1$ 的积分无效公式。我们利用卡茨和萨尔纳克的等分布结果给出的有限域上随机交错矩阵与超椭圆 $L$ 函数之间的联系,以及对函数域 $\mathbb F_q(x)$ 上某些多重特征和的评估,推导出我们的公式。我们应用我们的公式来研究窄带宽采样机制下随机单元交映矩阵特征值的线性统计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moments of traces of random symplectic matrices and hyperelliptic $L$-functions
We study matrix integrals of the form $$\int_{\mathrm{USp(2n)}}\prod_{j=1}^k\mathrm{tr}(U^j)^{a_j}\mathrm d U,$$ where $a_1,\ldots,a_r$ are natural numbers and integration is with respect to the Haar probability measure. We obtain a compact formula (the number of terms depends only on $\sum a_j$ and not on $n,k$) for the above integral in the non-Gaussian range $\sum_{j=1}^kja_j\le 4n+1$. This extends results of Diaconis-Shahshahani and Hughes-Rudnick who obtained a formula for the integral valid in the (Gaussian) range $\sum_{j=1}^kja_j\le n$ and $\sum_{j=1}^kja_j\le 2n+1$ respectively. We derive our formula using the connection between random symplectic matrices and hyperelliptic $L$-functions over finite fields, given by an equidistribution result of Katz and Sarnak, and an evaluation of a certain multiple character sum over the function field $\mathbb F_q(x)$. We apply our formula to study the linear statistics of eigenvalues of random unitary symplectic matrices in a narrow bandwidth sampling regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信