论粘性随机漫步和多人战争博弈的预期吸收时间

Axel Adjei, Elchanan Mossel
{"title":"论粘性随机漫步和多人战争博弈的预期吸收时间","authors":"Axel Adjei, Elchanan Mossel","doi":"arxiv-2409.05201","DOIUrl":null,"url":null,"abstract":"A recent paper by Bhatia, Chin, Mani, and Mossel (2024) defined stochastic\nprocesses which aim to model the game of war for two players for $n$ cards.\nThey showed that these models are equivalent to gambler's ruin and therefore\nhave expected termination time of $\\Theta(n^2)$. In this paper, we generalize\nthese model to any number of players $m$. We prove for the game with $m$\nplayers is equivalent to a sticky random walk on an $m$-simplex. We show that\nthis implies that the expected termination time is $O(n^2)$. We further provide\na lower bound of $\\Omega\\left(\\frac{n^2}{m^2}\\right)$. We conjecture that when\n$m$ divides $n$, and $n > m$ the termination time or the war game and the\nabsorption times of the sticky random walk are in fact $\\Theta(n^2)$ uniformly\nin $m$.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the expected absorption times of sticky random walks and multiple players war games\",\"authors\":\"Axel Adjei, Elchanan Mossel\",\"doi\":\"arxiv-2409.05201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recent paper by Bhatia, Chin, Mani, and Mossel (2024) defined stochastic\\nprocesses which aim to model the game of war for two players for $n$ cards.\\nThey showed that these models are equivalent to gambler's ruin and therefore\\nhave expected termination time of $\\\\Theta(n^2)$. In this paper, we generalize\\nthese model to any number of players $m$. We prove for the game with $m$\\nplayers is equivalent to a sticky random walk on an $m$-simplex. We show that\\nthis implies that the expected termination time is $O(n^2)$. We further provide\\na lower bound of $\\\\Omega\\\\left(\\\\frac{n^2}{m^2}\\\\right)$. We conjecture that when\\n$m$ divides $n$, and $n > m$ the termination time or the war game and the\\nabsorption times of the sticky random walk are in fact $\\\\Theta(n^2)$ uniformly\\nin $m$.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Bhatia、Chin、Mani 和 Mossel(2024 年)最近发表的一篇论文定义了随机过程,旨在对 $n$ 纸牌的双人战争游戏进行建模。在本文中,我们将这些模型推广到任意数目的玩家 $m$。我们证明有 $m$ 玩家的博弈等同于 $m$ 复数上的粘性随机行走。我们证明,这意味着预期终止时间为 $O(n^2)$。我们进一步提供了一个下限:$\Omega\left(\frac{n^2}{m^2}\right)$。我们猜想,当$m$除以$n$,且$n > m$时,战争博弈的终止时间和粘性随机游走的吸收时间实际上在$m$内均匀为$\theta(n^2)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the expected absorption times of sticky random walks and multiple players war games
A recent paper by Bhatia, Chin, Mani, and Mossel (2024) defined stochastic processes which aim to model the game of war for two players for $n$ cards. They showed that these models are equivalent to gambler's ruin and therefore have expected termination time of $\Theta(n^2)$. In this paper, we generalize these model to any number of players $m$. We prove for the game with $m$ players is equivalent to a sticky random walk on an $m$-simplex. We show that this implies that the expected termination time is $O(n^2)$. We further provide a lower bound of $\Omega\left(\frac{n^2}{m^2}\right)$. We conjecture that when $m$ divides $n$, and $n > m$ the termination time or the war game and the absorption times of the sticky random walk are in fact $\Theta(n^2)$ uniformly in $m$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信