{"title":"矩生成函数的普通凸性和对数凸性","authors":"M. R. Formica, E. Ostrovsky, L. Sirota","doi":"arxiv-2409.05085","DOIUrl":null,"url":null,"abstract":"We establish an ordinary as well as a logarithmical convexity of the Moment\nGenerating Function (MGF) for the centered random variable and vector (r.v.)\nsatisfying the Kramer's condition. Our considerations are based on the theory of the so-called Grand Lebesgue\nSpaces.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ordinary and logarithmical convexity of moment generating function\",\"authors\":\"M. R. Formica, E. Ostrovsky, L. Sirota\",\"doi\":\"arxiv-2409.05085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish an ordinary as well as a logarithmical convexity of the Moment\\nGenerating Function (MGF) for the centered random variable and vector (r.v.)\\nsatisfying the Kramer's condition. Our considerations are based on the theory of the so-called Grand Lebesgue\\nSpaces.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ordinary and logarithmical convexity of moment generating function
We establish an ordinary as well as a logarithmical convexity of the Moment
Generating Function (MGF) for the centered random variable and vector (r.v.)
satisfying the Kramer's condition. Our considerations are based on the theory of the so-called Grand Lebesgue
Spaces.