年龄相关随机连接模型重尾情况下的极限定理

Christian Hirsch, Takashi Owada
{"title":"年龄相关随机连接模型重尾情况下的极限定理","authors":"Christian Hirsch, Takashi Owada","doi":"arxiv-2409.05226","DOIUrl":null,"url":null,"abstract":"This paper considers limit theorems associated with subgraph counts in the\nage-dependent random connection model. First, we identify regimes where the\ncount of sub-trees converges weakly to a stable random variable under suitable\nassumptions on the shape of trees. The proof relies on an intermediate result\non weak convergence of associated point processes towards a Poisson point\nprocess. Additionally, we prove the same type of results for the clique counts.\nHere, a crucial ingredient includes the expectation asymptotics for clique\ncounts, which itself is a result of independent interest.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit theorems under heavy-tailed scenario in the age dependent random connection models\",\"authors\":\"Christian Hirsch, Takashi Owada\",\"doi\":\"arxiv-2409.05226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers limit theorems associated with subgraph counts in the\\nage-dependent random connection model. First, we identify regimes where the\\ncount of sub-trees converges weakly to a stable random variable under suitable\\nassumptions on the shape of trees. The proof relies on an intermediate result\\non weak convergence of associated point processes towards a Poisson point\\nprocess. Additionally, we prove the same type of results for the clique counts.\\nHere, a crucial ingredient includes the expectation asymptotics for clique\\ncounts, which itself is a result of independent interest.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了与年龄相关随机连接模型中子图计数相关的极限定理。首先,我们确定了在适当的树形假设下,子树数量弱收敛于稳定随机变量的情形。这一证明依赖于相关点过程向泊松点过程弱收敛的中间结果。此外,我们还证明了小块计数的同类结果。在这里,一个关键要素包括小块计数的期望渐近,这本身就是一个独立的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit theorems under heavy-tailed scenario in the age dependent random connection models
This paper considers limit theorems associated with subgraph counts in the age-dependent random connection model. First, we identify regimes where the count of sub-trees converges weakly to a stable random variable under suitable assumptions on the shape of trees. The proof relies on an intermediate result on weak convergence of associated point processes towards a Poisson point process. Additionally, we prove the same type of results for the clique counts. Here, a crucial ingredient includes the expectation asymptotics for clique counts, which itself is a result of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信