关于一些具有 Lipschitz 数字 1 的随机函数的迭代

Yingdong Lu, Tomasz Nowicki
{"title":"关于一些具有 Lipschitz 数字 1 的随机函数的迭代","authors":"Yingdong Lu, Tomasz Nowicki","doi":"arxiv-2409.06003","DOIUrl":null,"url":null,"abstract":"For the iterations of $x\\mapsto |x-\\theta|$ random functions with Lipschitz\nnumber one, we represent the dynamics as a Markov chain and prove its\nconvergence under mild conditions. We also demonstrate that the Wasserstein\nmetric of any two measures will not increase after the corresponding induced\niterations for measures and identify conditions under which a polynomial\nconvergence rate can be achieved in this metric. We also consider an associated\nnonlinear operator on the space of probability measures and identify its fixed\npoints through an detailed analysis of their characteristic functions.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the iterations of some random functions with Lipschitz number one\",\"authors\":\"Yingdong Lu, Tomasz Nowicki\",\"doi\":\"arxiv-2409.06003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the iterations of $x\\\\mapsto |x-\\\\theta|$ random functions with Lipschitz\\nnumber one, we represent the dynamics as a Markov chain and prove its\\nconvergence under mild conditions. We also demonstrate that the Wasserstein\\nmetric of any two measures will not increase after the corresponding induced\\niterations for measures and identify conditions under which a polynomial\\nconvergence rate can be achieved in this metric. We also consider an associated\\nnonlinear operator on the space of probability measures and identify its fixed\\npoints through an detailed analysis of their characteristic functions.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于具有 Lipschitznumber 1 的 $x/mapsto |x-\theta|$ 随机函数的迭代,我们将动力学表示为马尔可夫链,并在温和条件下证明了其收敛性。我们还证明了任意两个度量的 Wasserstein 度量在对度量进行相应的诱导迭代后不会增加,并确定了该度量可达到多项式收敛率的条件。我们还考虑了概率度量空间上的相关非线性算子,并通过对其特征函数的详细分析确定了其定点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the iterations of some random functions with Lipschitz number one
For the iterations of $x\mapsto |x-\theta|$ random functions with Lipschitz number one, we represent the dynamics as a Markov chain and prove its convergence under mild conditions. We also demonstrate that the Wasserstein metric of any two measures will not increase after the corresponding induced iterations for measures and identify conditions under which a polynomial convergence rate can be achieved in this metric. We also consider an associated nonlinear operator on the space of probability measures and identify its fixed points through an detailed analysis of their characteristic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信