{"title":"关于样本协方差矩阵张量模型解析痕量波动的说明","authors":"Alicja Dembczak-Kołodziejczyk","doi":"arxiv-2409.06007","DOIUrl":null,"url":null,"abstract":"In this note, we consider a sample covariance matrix of the form\n$$M_{n}=\\sum_{\\alpha=1}^m \\tau_\\alpha {\\mathbf{y}}_{\\alpha}^{(1)} \\otimes\n{\\mathbf{y}}_{\\alpha}^{(2)}({\\mathbf{y}}_{\\alpha}^{(1)} \\otimes\n{\\mathbf{y}}_{\\alpha}^{(2)})^T,$$ where $(\\mathbf{y}_{\\alpha}^{(1)},\\,\n{\\mathbf{y}}_{\\alpha}^{(2)})_{\\alpha}$ are independent vectors uniformly\ndistributed on the unit sphere $S^{n-1}$ and $\\tau_\\alpha \\in \\mathbb{R}_+ $.\nWe show that as $m, n \\to \\infty$, $m/n^2\\to c>0$, the centralized traces of\nthe resolvents,\n$\\mathrm{Tr}(M_n-zI_n)^{-1}-\\mathbf{E}\\mathrm{Tr}(M_n-zI_n)^{-1}$, $\\Im z\\ge\n\\eta_0>0$, converge in distribution to a two-dimensional Gaussian random\nvariable with zero mean and a certain covariance matrix. This work is a\ncontinuation of Dembczak-Ko{\\l}odziejczyk and Lytova (2023), and Lytova (2018).","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"178 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on the fluctuations of the resolvent traces of a tensor model of sample covariance matrices\",\"authors\":\"Alicja Dembczak-Kołodziejczyk\",\"doi\":\"arxiv-2409.06007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we consider a sample covariance matrix of the form\\n$$M_{n}=\\\\sum_{\\\\alpha=1}^m \\\\tau_\\\\alpha {\\\\mathbf{y}}_{\\\\alpha}^{(1)} \\\\otimes\\n{\\\\mathbf{y}}_{\\\\alpha}^{(2)}({\\\\mathbf{y}}_{\\\\alpha}^{(1)} \\\\otimes\\n{\\\\mathbf{y}}_{\\\\alpha}^{(2)})^T,$$ where $(\\\\mathbf{y}_{\\\\alpha}^{(1)},\\\\,\\n{\\\\mathbf{y}}_{\\\\alpha}^{(2)})_{\\\\alpha}$ are independent vectors uniformly\\ndistributed on the unit sphere $S^{n-1}$ and $\\\\tau_\\\\alpha \\\\in \\\\mathbb{R}_+ $.\\nWe show that as $m, n \\\\to \\\\infty$, $m/n^2\\\\to c>0$, the centralized traces of\\nthe resolvents,\\n$\\\\mathrm{Tr}(M_n-zI_n)^{-1}-\\\\mathbf{E}\\\\mathrm{Tr}(M_n-zI_n)^{-1}$, $\\\\Im z\\\\ge\\n\\\\eta_0>0$, converge in distribution to a two-dimensional Gaussian random\\nvariable with zero mean and a certain covariance matrix. This work is a\\ncontinuation of Dembczak-Ko{\\\\l}odziejczyk and Lytova (2023), and Lytova (2018).\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"178 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A note on the fluctuations of the resolvent traces of a tensor model of sample covariance matrices
In this note, we consider a sample covariance matrix of the form
$$M_{n}=\sum_{\alpha=1}^m \tau_\alpha {\mathbf{y}}_{\alpha}^{(1)} \otimes
{\mathbf{y}}_{\alpha}^{(2)}({\mathbf{y}}_{\alpha}^{(1)} \otimes
{\mathbf{y}}_{\alpha}^{(2)})^T,$$ where $(\mathbf{y}_{\alpha}^{(1)},\,
{\mathbf{y}}_{\alpha}^{(2)})_{\alpha}$ are independent vectors uniformly
distributed on the unit sphere $S^{n-1}$ and $\tau_\alpha \in \mathbb{R}_+ $.
We show that as $m, n \to \infty$, $m/n^2\to c>0$, the centralized traces of
the resolvents,
$\mathrm{Tr}(M_n-zI_n)^{-1}-\mathbf{E}\mathrm{Tr}(M_n-zI_n)^{-1}$, $\Im z\ge
\eta_0>0$, converge in distribution to a two-dimensional Gaussian random
variable with zero mean and a certain covariance matrix. This work is a
continuation of Dembczak-Ko{\l}odziejczyk and Lytova (2023), and Lytova (2018).