{"title":"有限域上随机多项式系统的解数","authors":"Ritik Jain","doi":"arxiv-2409.06866","DOIUrl":null,"url":null,"abstract":"We study the probability distribution of the number of common zeros of a\nsystem of $m$ random $n$-variate polynomials over a finite commutative ring\n$R$. We compute the expected number of common zeros of a system of polynomials\nover $R$. Then, in the case that $R$ is a field, under a\nnecessary-and-sufficient condition on the sample space, we show that the number\nof common zeros is binomially distributed.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The number of solutions of a random system of polynomials over a finite field\",\"authors\":\"Ritik Jain\",\"doi\":\"arxiv-2409.06866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the probability distribution of the number of common zeros of a\\nsystem of $m$ random $n$-variate polynomials over a finite commutative ring\\n$R$. We compute the expected number of common zeros of a system of polynomials\\nover $R$. Then, in the case that $R$ is a field, under a\\nnecessary-and-sufficient condition on the sample space, we show that the number\\nof common zeros is binomially distributed.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The number of solutions of a random system of polynomials over a finite field
We study the probability distribution of the number of common zeros of a
system of $m$ random $n$-variate polynomials over a finite commutative ring
$R$. We compute the expected number of common zeros of a system of polynomials
over $R$. Then, in the case that $R$ is a field, under a
necessary-and-sufficient condition on the sample space, we show that the number
of common zeros is binomially distributed.