标记霍克斯风险过程的函数近似值

Laure CoutinIMT, Mahmoud Khabou
{"title":"标记霍克斯风险过程的函数近似值","authors":"Laure CoutinIMT, Mahmoud Khabou","doi":"arxiv-2409.06276","DOIUrl":null,"url":null,"abstract":"The marked Hawkes risk process is a compound point process for which the\noccurrence and amplitude of past events impact the future. Thanks to its\nautoregressive properties, it found applications in various fields such as\nneuosciences, social networks and insurance.Since data in real life is acquired\nover a discrete time grid, we propose a strong discrete-time approximation of\nthe continuous-time Hawkes risk process obtained be embedding from the same\nPoisson measure. We then prove trajectorial convergence results both in some\nfractional Sobolev spaces and in the Skorokhod space, hence extending the\ntheorems proven in the literature. We also provide upper bounds on the\nconvergence speed with explicit dependence on the size of the discretisation\nstep, the time horizon and the regularity of the kernel.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional approximation of the marked Hawkes risk process\",\"authors\":\"Laure CoutinIMT, Mahmoud Khabou\",\"doi\":\"arxiv-2409.06276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The marked Hawkes risk process is a compound point process for which the\\noccurrence and amplitude of past events impact the future. Thanks to its\\nautoregressive properties, it found applications in various fields such as\\nneuosciences, social networks and insurance.Since data in real life is acquired\\nover a discrete time grid, we propose a strong discrete-time approximation of\\nthe continuous-time Hawkes risk process obtained be embedding from the same\\nPoisson measure. We then prove trajectorial convergence results both in some\\nfractional Sobolev spaces and in the Skorokhod space, hence extending the\\ntheorems proven in the literature. We also provide upper bounds on the\\nconvergence speed with explicit dependence on the size of the discretisation\\nstep, the time horizon and the regularity of the kernel.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

标记霍克斯风险过程是一个复合点过程,过去事件的发生和振幅会对未来产生影响。由于现实生活中的数据是在离散时间网格上获取的,因此我们提出了连续时间霍克斯风险过程的强离散时间近似值,该近似值通过嵌入相同的泊松量度获得。然后,我们证明了某些分数 Sobolev 空间和 Skorokhod 空间中的轨迹收敛结果,从而扩展了文献中证明的定理。我们还提供了收敛速度的上限,并明确依赖于离散化步骤的大小、时间跨度和核的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional approximation of the marked Hawkes risk process
The marked Hawkes risk process is a compound point process for which the occurrence and amplitude of past events impact the future. Thanks to its autoregressive properties, it found applications in various fields such as neuosciences, social networks and insurance.Since data in real life is acquired over a discrete time grid, we propose a strong discrete-time approximation of the continuous-time Hawkes risk process obtained be embedding from the same Poisson measure. We then prove trajectorial convergence results both in some fractional Sobolev spaces and in the Skorokhod space, hence extending the theorems proven in the literature. We also provide upper bounds on the convergence speed with explicit dependence on the size of the discretisation step, the time horizon and the regularity of the kernel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信