高斯逼近和泊松射影噪声的适度偏差,以及对复合广义霍克斯过程的应用

Mahmoud Khabou, Giovanni Luca Torrisi
{"title":"高斯逼近和泊松射影噪声的适度偏差,以及对复合广义霍克斯过程的应用","authors":"Mahmoud Khabou, Giovanni Luca Torrisi","doi":"arxiv-2409.06394","DOIUrl":null,"url":null,"abstract":"In this article, we give explicit bounds on the Wasserstein and the\nKolmogorov distances between random variables lying in the first chaos of the\nPoisson space and the standard Normal distribution, using the results proved by\nLast, Peccati and Schulte. Relying on the theory developed in the work of\nSaulis and Statulevicius and on a fine control of the cumulants of the first\nchaoses, we also derive moderate deviation principles, Bernstein-type\nconcentration inequalities and Normal approximation bounds with Cram\\'er\ncorrection terms for the same variables. The aforementioned results are then\napplied to Poisson shot-noise processes and, in particular, to the generalized\ncompound Hawkes point processes (a class of stochastic models, introduced in\nthis paper, which generalizes classical Hawkes processes). This extends the\nrecent results availale in the literature regarding the Normal approximation\nand moderate deviations.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaussian Approximation and Moderate Deviations of Poisson Shot Noises with Application to Compound Generalized Hawkes Processes\",\"authors\":\"Mahmoud Khabou, Giovanni Luca Torrisi\",\"doi\":\"arxiv-2409.06394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we give explicit bounds on the Wasserstein and the\\nKolmogorov distances between random variables lying in the first chaos of the\\nPoisson space and the standard Normal distribution, using the results proved by\\nLast, Peccati and Schulte. Relying on the theory developed in the work of\\nSaulis and Statulevicius and on a fine control of the cumulants of the first\\nchaoses, we also derive moderate deviation principles, Bernstein-type\\nconcentration inequalities and Normal approximation bounds with Cram\\\\'er\\ncorrection terms for the same variables. The aforementioned results are then\\napplied to Poisson shot-noise processes and, in particular, to the generalized\\ncompound Hawkes point processes (a class of stochastic models, introduced in\\nthis paper, which generalizes classical Hawkes processes). This extends the\\nrecent results availale in the literature regarding the Normal approximation\\nand moderate deviations.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用拉斯特、佩卡蒂和舒尔特证明的结果,给出了位于泊松空间第一混沌中的随机变量与标准正态分布之间的瓦瑟斯坦距离和科尔莫戈罗夫距离的明确界限。根据索利斯(Saulis)和斯塔图列维丘斯(Statulevicius)的理论以及对第一混沌累积量的精细控制,我们还推导出了中等偏差原则、伯恩斯坦-类型集中不等式以及带有克拉姆(Cram)校正项的相同变量的正态近似边界。上述结果被应用于泊松射频噪声过程,特别是广义复合霍克斯点过程(本文引入的一类随机模型,是经典霍克斯过程的广义化)。这扩展了文献中关于正态近似和适度偏差的最新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian Approximation and Moderate Deviations of Poisson Shot Noises with Application to Compound Generalized Hawkes Processes
In this article, we give explicit bounds on the Wasserstein and the Kolmogorov distances between random variables lying in the first chaos of the Poisson space and the standard Normal distribution, using the results proved by Last, Peccati and Schulte. Relying on the theory developed in the work of Saulis and Statulevicius and on a fine control of the cumulants of the first chaoses, we also derive moderate deviation principles, Bernstein-type concentration inequalities and Normal approximation bounds with Cram\'er correction terms for the same variables. The aforementioned results are then applied to Poisson shot-noise processes and, in particular, to the generalized compound Hawkes point processes (a class of stochastic models, introduced in this paper, which generalizes classical Hawkes processes). This extends the recent results availale in the literature regarding the Normal approximation and moderate deviations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信