戴森气体中的电流波动

Rahul Dandekar, P. L. Krapivsky, Kirone Mallick
{"title":"戴森气体中的电流波动","authors":"Rahul Dandekar, P. L. Krapivsky, Kirone Mallick","doi":"arxiv-2409.06881","DOIUrl":null,"url":null,"abstract":"We study large fluctuations of the current in a Dyson gas, a 1D system of\nparticles interacting through a logarithmic potential and subjected to random\nnoise. We adapt the macroscopic fluctuation theory to the Dyson gas and derive\ntwo coupled partial differential equations describing the evolution of the\ndensity and momentum. These equations are nonlinear and non-local, and the\n`boundary' conditions are mixed: some at the initial time and others at the\nfinal time. If the initial condition can fluctuate (annealed setting), this\nboundary-value problem is tractable. We compute the cumulant generating\nfunction encoding all the cumulants of the current.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"178 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current fluctuations in the Dyson Gas\",\"authors\":\"Rahul Dandekar, P. L. Krapivsky, Kirone Mallick\",\"doi\":\"arxiv-2409.06881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study large fluctuations of the current in a Dyson gas, a 1D system of\\nparticles interacting through a logarithmic potential and subjected to random\\nnoise. We adapt the macroscopic fluctuation theory to the Dyson gas and derive\\ntwo coupled partial differential equations describing the evolution of the\\ndensity and momentum. These equations are nonlinear and non-local, and the\\n`boundary' conditions are mixed: some at the initial time and others at the\\nfinal time. If the initial condition can fluctuate (annealed setting), this\\nboundary-value problem is tractable. We compute the cumulant generating\\nfunction encoding all the cumulants of the current.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"178 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

戴森气体是一个通过对数势能相互作用并受到随机噪声影响的一维粒子系统,我们研究了戴森气体中电流的大波动。我们将宏观波动理论应用于戴森气体,并推导出描述密度和动量演化的两个耦合偏微分方程。这些方程是非线性和非局部的,而且 "边界 "条件是混合的:一些在初始时,另一些在最终时。如果初始条件可以波动(退火设置),那么这个边界值问题就很容易解决。我们计算的累积生成函数编码了当前的所有累积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Current fluctuations in the Dyson Gas
We study large fluctuations of the current in a Dyson gas, a 1D system of particles interacting through a logarithmic potential and subjected to random noise. We adapt the macroscopic fluctuation theory to the Dyson gas and derive two coupled partial differential equations describing the evolution of the density and momentum. These equations are nonlinear and non-local, and the `boundary' conditions are mixed: some at the initial time and others at the final time. If the initial condition can fluctuate (annealed setting), this boundary-value problem is tractable. We compute the cumulant generating function encoding all the cumulants of the current.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信