论超扩散大象随机漫步的极限规律

Hélène Guérin, Lucile Laulin, Kilian Raschel, Thomas Simon
{"title":"论超扩散大象随机漫步的极限规律","authors":"Hélène Guérin, Lucile Laulin, Kilian Raschel, Thomas Simon","doi":"arxiv-2409.06836","DOIUrl":null,"url":null,"abstract":"When the memory parameter of the elephant random walk is above a critical\nthreshold, the process becomes superdiffusive and, once suitably normalised,\nconverges to a non-Gaussian random variable. In a recent paper by the three\nfirst authors, it was shown that this limit variable has a density and that the\nassociated moments satisfy a nonlinear recurrence relation. In this work, we\nexploit this recurrence to derive an asymptotic expansion of the moments and\nthe asymptotic behaviour of the density at infinity. In particular, we show\nthat an asymmetry in the distribution of the first step of the random walk\nleads to an asymmetry of the tails of the limit variable. These results follow\nfrom a new, explicit expression of the Stieltjes transformation of the moments\nin terms of special functions such as hypergeometric series and incomplete beta\nintegrals. We also obtain other results about the random variable, such as\nunimodality and, for certain values of the memory parameter, log-concavity.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the limit law of the superdiffusive elephant random walk\",\"authors\":\"Hélène Guérin, Lucile Laulin, Kilian Raschel, Thomas Simon\",\"doi\":\"arxiv-2409.06836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When the memory parameter of the elephant random walk is above a critical\\nthreshold, the process becomes superdiffusive and, once suitably normalised,\\nconverges to a non-Gaussian random variable. In a recent paper by the three\\nfirst authors, it was shown that this limit variable has a density and that the\\nassociated moments satisfy a nonlinear recurrence relation. In this work, we\\nexploit this recurrence to derive an asymptotic expansion of the moments and\\nthe asymptotic behaviour of the density at infinity. In particular, we show\\nthat an asymmetry in the distribution of the first step of the random walk\\nleads to an asymmetry of the tails of the limit variable. These results follow\\nfrom a new, explicit expression of the Stieltjes transformation of the moments\\nin terms of special functions such as hypergeometric series and incomplete beta\\nintegrals. We also obtain other results about the random variable, such as\\nunimodality and, for certain values of the memory parameter, log-concavity.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当大象随机游走的记忆参数超过临界阈值时,过程就会变得超扩散,一旦适当归一化,就会收敛为非高斯随机变量。在三位第一作者最近发表的一篇论文中,证明了这种极限变量具有密度,而且相关矩满足非线性递推关系。在本文中,我们利用这一递推关系推导出了矩的渐近展开和密度在无穷大时的渐近行为。特别是,我们证明了随机游走第一步分布的不对称性导致了极限变量尾部的不对称性。这些结果源于用特殊函数(如超几何级数和不完全贝特积分)对矩的斯蒂尔杰斯变换的新的明确表达。我们还得到了有关随机变量的其他结果,如单调性,以及在记忆参数的某些值下的对数凹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the limit law of the superdiffusive elephant random walk
When the memory parameter of the elephant random walk is above a critical threshold, the process becomes superdiffusive and, once suitably normalised, converges to a non-Gaussian random variable. In a recent paper by the three first authors, it was shown that this limit variable has a density and that the associated moments satisfy a nonlinear recurrence relation. In this work, we exploit this recurrence to derive an asymptotic expansion of the moments and the asymptotic behaviour of the density at infinity. In particular, we show that an asymmetry in the distribution of the first step of the random walk leads to an asymmetry of the tails of the limit variable. These results follow from a new, explicit expression of the Stieltjes transformation of the moments in terms of special functions such as hypergeometric series and incomplete beta integrals. We also obtain other results about the random variable, such as unimodality and, for certain values of the memory parameter, log-concavity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信