{"title":"伯努利-拉普拉斯瓮的极限轮廓","authors":"Sam Olesker-Taylor, Dominik Schmid","doi":"arxiv-2409.07900","DOIUrl":null,"url":null,"abstract":"We analyse the convergence to equilibrium of the Bernoulli--Laplace urn\nmodel: initially, one urn contains $k$ red balls and a second $n-k$ blue balls;\nin each step, a pair of balls is chosen uniform and their locations are\nswitched. Cutoff is known to occur at $\\tfrac12 n \\log \\min\\{k, \\sqrt n\\}$ with\nwindow order $n$ whenever $1 \\ll k \\le \\tfrac12 n$. We refine this by\ndetermining the limit profile: a function $\\Phi$ such that \\[ d_\\mathsf{TV}\\bigl( \\tfrac12 n \\log \\min\\{k, \\sqrt n\\} + \\theta n \\bigr) \\to \\Phi(\\theta) \\quad\\text{as}\\quad n \\to \\infty \\quad\\text{for all}\\quad \\theta \\in \\mathbb R. \\] Our main technical contribution, of independent\ninterest, approximates a rescaled chain by a diffusion on $\\mathbb R$ when $k\n\\gg \\sqrt n$, and uses its explicit law as a Gaussian process.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit Profile for the Bernoulli--Laplace Urn\",\"authors\":\"Sam Olesker-Taylor, Dominik Schmid\",\"doi\":\"arxiv-2409.07900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyse the convergence to equilibrium of the Bernoulli--Laplace urn\\nmodel: initially, one urn contains $k$ red balls and a second $n-k$ blue balls;\\nin each step, a pair of balls is chosen uniform and their locations are\\nswitched. Cutoff is known to occur at $\\\\tfrac12 n \\\\log \\\\min\\\\{k, \\\\sqrt n\\\\}$ with\\nwindow order $n$ whenever $1 \\\\ll k \\\\le \\\\tfrac12 n$. We refine this by\\ndetermining the limit profile: a function $\\\\Phi$ such that \\\\[ d_\\\\mathsf{TV}\\\\bigl( \\\\tfrac12 n \\\\log \\\\min\\\\{k, \\\\sqrt n\\\\} + \\\\theta n \\\\bigr) \\\\to \\\\Phi(\\\\theta) \\\\quad\\\\text{as}\\\\quad n \\\\to \\\\infty \\\\quad\\\\text{for all}\\\\quad \\\\theta \\\\in \\\\mathbb R. \\\\] Our main technical contribution, of independent\\ninterest, approximates a rescaled chain by a diffusion on $\\\\mathbb R$ when $k\\n\\\\gg \\\\sqrt n$, and uses its explicit law as a Gaussian process.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们分析了伯努利--拉普拉斯瓮模型向均衡收敛的过程:最初,一个瓮包含 $k$ 红球,第二个瓮包含 $n-k$ 蓝球;在每一步中,均匀地选择一对球,并切换它们的位置。众所周知,当 1 \ll k \le \tfrac12 n$ 时,截止点会出现在 $\tfrac12 n \log \min\{k, \sqrt n\}$,窗口阶数为 $n$。我们通过确定极限轮廓来完善这一点:a function $\Phi$ such that \[ d_\mathsf{TV}\bigl( \tfrac12 n \log \min\{k, \sqrt n\} + \theta n \bigr) \to \Phi(\theta) \quad\text{as}\quad n \to \infty \quad\text{for all}\quad \theta \in \mathbb R.\]我们的主要技术贡献是,当 $k\gg \sqrt n$ 时,用 $\mathbb R$ 上的扩散来近似一个重标度链,并将其显式规律作为一个高斯过程。
We analyse the convergence to equilibrium of the Bernoulli--Laplace urn
model: initially, one urn contains $k$ red balls and a second $n-k$ blue balls;
in each step, a pair of balls is chosen uniform and their locations are
switched. Cutoff is known to occur at $\tfrac12 n \log \min\{k, \sqrt n\}$ with
window order $n$ whenever $1 \ll k \le \tfrac12 n$. We refine this by
determining the limit profile: a function $\Phi$ such that \[ d_\mathsf{TV}\bigl( \tfrac12 n \log \min\{k, \sqrt n\} + \theta n \bigr) \to \Phi(\theta) \quad\text{as}\quad n \to \infty \quad\text{for all}\quad \theta \in \mathbb R. \] Our main technical contribution, of independent
interest, approximates a rescaled chain by a diffusion on $\mathbb R$ when $k
\gg \sqrt n$, and uses its explicit law as a Gaussian process.