随机漫步和桥梁的西尔维斯特问题

Hugo Panzo
{"title":"随机漫步和桥梁的西尔维斯特问题","authors":"Hugo Panzo","doi":"arxiv-2409.07927","DOIUrl":null,"url":null,"abstract":"Consider a random walk in $\\mathbb{R}^d$ that starts at the origin and whose\nincrement distribution assigns zero probability to any affine hyperplane. We\nsolve Sylvester's problem for these random walks by showing that the\nprobability that the first $d+2$ steps of the walk are in convex position is\nequal to $1-\\frac{2}{(d+1)!}$. The analogous result also holds for random\nbridges of length $d+2$, so long as the joint increment distribution is\nexchangeable.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sylvester's problem for random walks and bridges\",\"authors\":\"Hugo Panzo\",\"doi\":\"arxiv-2409.07927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a random walk in $\\\\mathbb{R}^d$ that starts at the origin and whose\\nincrement distribution assigns zero probability to any affine hyperplane. We\\nsolve Sylvester's problem for these random walks by showing that the\\nprobability that the first $d+2$ steps of the walk are in convex position is\\nequal to $1-\\\\frac{2}{(d+1)!}$. The analogous result also holds for random\\nbridges of length $d+2$, so long as the joint increment distribution is\\nexchangeable.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑$\mathbb{R}^d$中的随机行走,它从原点开始,其增量分布赋予任何仿射超平面的概率为零。通过证明行走的前 $d+2$ 步处于凸位置的概率等于$1-\frac{2}{(d+1)!}$,解决这些随机行走的西尔维斯特问题。只要联合增量分布是可交换的,类似的结果对于长度为 $d+2$ 的随机走廊也是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sylvester's problem for random walks and bridges
Consider a random walk in $\mathbb{R}^d$ that starts at the origin and whose increment distribution assigns zero probability to any affine hyperplane. We solve Sylvester's problem for these random walks by showing that the probability that the first $d+2$ steps of the walk are in convex position is equal to $1-\frac{2}{(d+1)!}$. The analogous result also holds for random bridges of length $d+2$, so long as the joint increment distribution is exchangeable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信