K. Lim, P. Ricci, L. Stenger, B. De Lucca, G. Durr-Legoupil-Nicoud, O. Février, C. Theiler and K. Verhaegh
{"title":"双空 L 模式等离子体中的预测性功率分担缩放定律","authors":"K. Lim, P. Ricci, L. Stenger, B. De Lucca, G. Durr-Legoupil-Nicoud, O. Février, C. Theiler and K. Verhaegh","doi":"10.1088/1741-4326/ad7743","DOIUrl":null,"url":null,"abstract":"The physical mechanisms regulating the power sharing at the outer targets of L-mode double-null (DN) configurations are investigated using nonlinear, flux-driven, three-dimensional two-fluid simulations. Scans of parameters that regulate the turbulent level, such as the plasma resistivity and the magnetic imbalance, reveal that the power asymmetry in DN configurations is determined by the combined effects of diamagnetic drift, turbulence, and geometrical factor. Leveraging these observations, an analytical theory-based scaling law for the power-sharing asymmetry is derived and compared with nonlinear simulations. These comparisons indicate that the scaling law effectively captures the trends observed in simulations. Validation with experimental data from TCV DN discharges demonstrates agreement of the scaling law with the experimental results.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"63 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive power-sharing scaling law in double-null L-mode plasmas\",\"authors\":\"K. Lim, P. Ricci, L. Stenger, B. De Lucca, G. Durr-Legoupil-Nicoud, O. Février, C. Theiler and K. Verhaegh\",\"doi\":\"10.1088/1741-4326/ad7743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The physical mechanisms regulating the power sharing at the outer targets of L-mode double-null (DN) configurations are investigated using nonlinear, flux-driven, three-dimensional two-fluid simulations. Scans of parameters that regulate the turbulent level, such as the plasma resistivity and the magnetic imbalance, reveal that the power asymmetry in DN configurations is determined by the combined effects of diamagnetic drift, turbulence, and geometrical factor. Leveraging these observations, an analytical theory-based scaling law for the power-sharing asymmetry is derived and compared with nonlinear simulations. These comparisons indicate that the scaling law effectively captures the trends observed in simulations. Validation with experimental data from TCV DN discharges demonstrates agreement of the scaling law with the experimental results.\",\"PeriodicalId\":19379,\"journal\":{\"name\":\"Nuclear Fusion\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-4326/ad7743\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad7743","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
摘要
通过非线性、通量驱动、三维二流体模拟,研究了调节 L 模式双空(DN)配置外部目标功率共享的物理机制。对调节湍流水平的参数(如等离子体电阻率和磁不平衡)的扫描显示,DN 配置中的功率不对称是由二磁漂移、湍流和几何因素的综合影响决定的。利用这些观察结果,我们推导出了基于分析理论的功率分享不对称比例定律,并将其与非线性模拟进行了比较。这些比较表明,缩放定律有效地捕捉到了模拟中观察到的趋势。用 TCV DN 放电的实验数据进行验证表明,缩放定律与实验结果一致。
Predictive power-sharing scaling law in double-null L-mode plasmas
The physical mechanisms regulating the power sharing at the outer targets of L-mode double-null (DN) configurations are investigated using nonlinear, flux-driven, three-dimensional two-fluid simulations. Scans of parameters that regulate the turbulent level, such as the plasma resistivity and the magnetic imbalance, reveal that the power asymmetry in DN configurations is determined by the combined effects of diamagnetic drift, turbulence, and geometrical factor. Leveraging these observations, an analytical theory-based scaling law for the power-sharing asymmetry is derived and compared with nonlinear simulations. These comparisons indicate that the scaling law effectively captures the trends observed in simulations. Validation with experimental data from TCV DN discharges demonstrates agreement of the scaling law with the experimental results.
期刊介绍:
Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes:
-the production, heating and confinement of high temperature plasmas;
-the physical properties of such plasmas;
-the experimental or theoretical methods of exploring or explaining them;
-fusion reactor physics;
-reactor concepts; and
-fusion technologies.
The journal has a dedicated Associate Editor for inertial confinement fusion.