由多模式提示引擎驱动的地基模型,用于跨勘探的通用地震地质体解释

Hang Gao, Xinming Wu, Luming Liang, Hanlin Sheng, Xu Si, Gao Hui, Yaxing Li
{"title":"由多模式提示引擎驱动的地基模型,用于跨勘探的通用地震地质体解释","authors":"Hang Gao, Xinming Wu, Luming Liang, Hanlin Sheng, Xu Si, Gao Hui, Yaxing Li","doi":"arxiv-2409.04962","DOIUrl":null,"url":null,"abstract":"Seismic geobody interpretation is crucial for structural geology studies and\nvarious engineering applications. Existing deep learning methods show promise\nbut lack support for multi-modal inputs and struggle to generalize to different\ngeobody types or surveys. We introduce a promptable foundation model for\ninterpreting any geobodies across seismic surveys. This model integrates a\npre-trained vision foundation model (VFM) with a sophisticated multi-modal\nprompt engine. The VFM, pre-trained on massive natural images and fine-tuned on\nseismic data, provides robust feature extraction for cross-survey\ngeneralization. The prompt engine incorporates multi-modal prior information to\niteratively refine geobody delineation. Extensive experiments demonstrate the\nmodel's superior accuracy, scalability from 2D to 3D, and generalizability to\nvarious geobody types, including those unseen during training. To our\nknowledge, this is the first highly scalable and versatile multi-modal\nfoundation model capable of interpreting any geobodies across surveys while\nsupporting real-time interactions. Our approach establishes a new paradigm for\ngeoscientific data interpretation, with broad potential for transfer to other\ntasks.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A foundation model enpowered by a multi-modal prompt engine for universal seismic geobody interpretation across surveys\",\"authors\":\"Hang Gao, Xinming Wu, Luming Liang, Hanlin Sheng, Xu Si, Gao Hui, Yaxing Li\",\"doi\":\"arxiv-2409.04962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seismic geobody interpretation is crucial for structural geology studies and\\nvarious engineering applications. Existing deep learning methods show promise\\nbut lack support for multi-modal inputs and struggle to generalize to different\\ngeobody types or surveys. We introduce a promptable foundation model for\\ninterpreting any geobodies across seismic surveys. This model integrates a\\npre-trained vision foundation model (VFM) with a sophisticated multi-modal\\nprompt engine. The VFM, pre-trained on massive natural images and fine-tuned on\\nseismic data, provides robust feature extraction for cross-survey\\ngeneralization. The prompt engine incorporates multi-modal prior information to\\niteratively refine geobody delineation. Extensive experiments demonstrate the\\nmodel's superior accuracy, scalability from 2D to 3D, and generalizability to\\nvarious geobody types, including those unseen during training. To our\\nknowledge, this is the first highly scalable and versatile multi-modal\\nfoundation model capable of interpreting any geobodies across surveys while\\nsupporting real-time interactions. Our approach establishes a new paradigm for\\ngeoscientific data interpretation, with broad potential for transfer to other\\ntasks.\",\"PeriodicalId\":501270,\"journal\":{\"name\":\"arXiv - PHYS - Geophysics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地震地质体解释对于构造地质学研究和各种工程应用至关重要。现有的深度学习方法前景广阔,但缺乏对多模态输入的支持,而且难以推广到不同的地质体类型或勘探。我们引入了一个可提示的基础模型,用于解释地震勘探中的任何地体。该模型将预先训练的视觉基础模型(VFM)与复杂的多模态提示引擎整合在一起。视觉基础模型在海量自然图像上进行了预训练,并在地震数据上进行了微调,为跨勘探归纳提供了强大的特征提取功能。提示引擎结合多模态先验信息,不断完善地质体的划分。广泛的实验证明了该模型卓越的准确性、从二维到三维的可扩展性,以及对各种地质体类型的泛化能力,包括那些在训练过程中未见过的地质体。据我们所知,这是第一个高度可扩展的多功能多模式地基模型,能够解释勘测中的任何地质体,同时支持实时交互。我们的方法建立了一种新的锻造科学数据解释范式,具有向其他任务转移的广泛潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A foundation model enpowered by a multi-modal prompt engine for universal seismic geobody interpretation across surveys
Seismic geobody interpretation is crucial for structural geology studies and various engineering applications. Existing deep learning methods show promise but lack support for multi-modal inputs and struggle to generalize to different geobody types or surveys. We introduce a promptable foundation model for interpreting any geobodies across seismic surveys. This model integrates a pre-trained vision foundation model (VFM) with a sophisticated multi-modal prompt engine. The VFM, pre-trained on massive natural images and fine-tuned on seismic data, provides robust feature extraction for cross-survey generalization. The prompt engine incorporates multi-modal prior information to iteratively refine geobody delineation. Extensive experiments demonstrate the model's superior accuracy, scalability from 2D to 3D, and generalizability to various geobody types, including those unseen during training. To our knowledge, this is the first highly scalable and versatile multi-modal foundation model capable of interpreting any geobodies across surveys while supporting real-time interactions. Our approach establishes a new paradigm for geoscientific data interpretation, with broad potential for transfer to other tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信