设计用于心脏肿大检测和放射报告生成的计算机辅助诊断系统

Tianhao Zhu, Kexin Xu, Wonchan Son, Kristofer Linton-Reid, Marc Boubnovski-Martell, Matt Grech-Sollars, Antoine D. Lain, Joram M. Posma
{"title":"设计用于心脏肿大检测和放射报告生成的计算机辅助诊断系统","authors":"Tianhao Zhu, Kexin Xu, Wonchan Son, Kristofer Linton-Reid, Marc Boubnovski-Martell, Matt Grech-Sollars, Antoine D. Lain, Joram M. Posma","doi":"10.1101/2024.09.02.24311997","DOIUrl":null,"url":null,"abstract":"Chest X-ray (CXR) is a conventional diagnostic tool for cardiothoracic assessment, boasting a high degree of costeffectiveness and versatility. However, with an increasing number of scans to be evaluated by radiologists, they can suffer from fatigue which might impede diagnostic accuracy and slow down report generation. We describe a prototype computer-assisted diagnosis (CAD) pipeline employing computer vision (CV) and Natural Language Processing (NLP) trained on the publicly available MIMICCXR dataset. We perform image quality assessment, view labelling, segmentation-based cardiomegaly severity classification, and use the output of the severity classification for large language model-based report generation. Four certified radiologists assessed the output accuracy of the CAD pipeline. Across the dataset composed of 377,100 CXR images and 227,827 free-text radiology reports, our system identified 0.18% of cases with mixedsex mentions, 0.02% of poor quality images (F1=0.81), and 0.28% of wrongly labelled views (accuracy 99.4%), furthermore it assigned views for 4.18% of images which have unlabelled views. For binary cardiomegaly classification, we achieve state-of-the-art performance of 95.2% accuracy. The inter-radiologist agreement on evaluating the report’s semantics and correctness for radiologistMIMIC is 0.62 (strict agreement) and 0.85 (relaxed agreement) similar to the radiologist-CAD agreement of 0.55 (strict) and 0.93 (relaxed). Our work found and corrected several incorrect or missing metadata annotations for the MIMIC-CXR dataset, and the performance of our CAD system suggests performance on par with human radiologists. Future improvements revolve around improved text generation and the development of CV tools for other diseases.","PeriodicalId":501454,"journal":{"name":"medRxiv - Health Informatics","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a computer-assisted diagnosis system for cardiomegaly detection and radiology report generation\",\"authors\":\"Tianhao Zhu, Kexin Xu, Wonchan Son, Kristofer Linton-Reid, Marc Boubnovski-Martell, Matt Grech-Sollars, Antoine D. Lain, Joram M. Posma\",\"doi\":\"10.1101/2024.09.02.24311997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chest X-ray (CXR) is a conventional diagnostic tool for cardiothoracic assessment, boasting a high degree of costeffectiveness and versatility. However, with an increasing number of scans to be evaluated by radiologists, they can suffer from fatigue which might impede diagnostic accuracy and slow down report generation. We describe a prototype computer-assisted diagnosis (CAD) pipeline employing computer vision (CV) and Natural Language Processing (NLP) trained on the publicly available MIMICCXR dataset. We perform image quality assessment, view labelling, segmentation-based cardiomegaly severity classification, and use the output of the severity classification for large language model-based report generation. Four certified radiologists assessed the output accuracy of the CAD pipeline. Across the dataset composed of 377,100 CXR images and 227,827 free-text radiology reports, our system identified 0.18% of cases with mixedsex mentions, 0.02% of poor quality images (F1=0.81), and 0.28% of wrongly labelled views (accuracy 99.4%), furthermore it assigned views for 4.18% of images which have unlabelled views. For binary cardiomegaly classification, we achieve state-of-the-art performance of 95.2% accuracy. The inter-radiologist agreement on evaluating the report’s semantics and correctness for radiologistMIMIC is 0.62 (strict agreement) and 0.85 (relaxed agreement) similar to the radiologist-CAD agreement of 0.55 (strict) and 0.93 (relaxed). Our work found and corrected several incorrect or missing metadata annotations for the MIMIC-CXR dataset, and the performance of our CAD system suggests performance on par with human radiologists. Future improvements revolve around improved text generation and the development of CV tools for other diseases.\",\"PeriodicalId\":501454,\"journal\":{\"name\":\"medRxiv - Health Informatics\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.02.24311997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.02.24311997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胸部 X 光(CXR)是心胸评估的传统诊断工具,具有成本效益高、用途广泛等优点。然而,随着放射科医生需要评估的扫描数量越来越多,他们可能会感到疲劳,这可能会影响诊断的准确性,并减慢报告生成的速度。我们介绍了一种计算机辅助诊断 (CAD) 管道原型,它采用计算机视觉 (CV) 和自然语言处理 (NLP),在公开可用的 MIMICCXR 数据集上进行训练。我们进行图像质量评估、视图标记、基于分割的心脏肿大严重程度分类,并将严重程度分类的输出用于基于大语言模型的报告生成。四位经过认证的放射科专家对 CAD 管道的输出准确性进行了评估。在由 377,100 张 CXR 图像和 227,827 份自由文本放射学报告组成的数据集中,我们的系统识别出了 0.18% 的混合性提及病例、0.02% 的劣质图像(F1=0.81)和 0.28% 的错误标注视图(准确率为 99.4%),此外还为 4.18% 的未标注视图的图像分配了视图。对于二元心肌肥大分类,我们的准确率达到了 95.2% 的一流水平。放射科医师间对放射科医师 MIMIC 报告语义和正确性评估的一致性为 0.62(严格一致)和 0.85(宽松一致),与放射科医师与计算机断层扫描(CAD)的一致性 0.55(严格一致)和 0.93(宽松一致)相似。我们的工作发现并纠正了 MIMIC-CXR 数据集中几个错误或缺失的元数据注释,我们的 CAD 系统的性能表明与人类放射科医生的性能相当。未来的改进主要围绕改进文本生成和开发其他疾病的 CV 工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing a computer-assisted diagnosis system for cardiomegaly detection and radiology report generation
Chest X-ray (CXR) is a conventional diagnostic tool for cardiothoracic assessment, boasting a high degree of costeffectiveness and versatility. However, with an increasing number of scans to be evaluated by radiologists, they can suffer from fatigue which might impede diagnostic accuracy and slow down report generation. We describe a prototype computer-assisted diagnosis (CAD) pipeline employing computer vision (CV) and Natural Language Processing (NLP) trained on the publicly available MIMICCXR dataset. We perform image quality assessment, view labelling, segmentation-based cardiomegaly severity classification, and use the output of the severity classification for large language model-based report generation. Four certified radiologists assessed the output accuracy of the CAD pipeline. Across the dataset composed of 377,100 CXR images and 227,827 free-text radiology reports, our system identified 0.18% of cases with mixedsex mentions, 0.02% of poor quality images (F1=0.81), and 0.28% of wrongly labelled views (accuracy 99.4%), furthermore it assigned views for 4.18% of images which have unlabelled views. For binary cardiomegaly classification, we achieve state-of-the-art performance of 95.2% accuracy. The inter-radiologist agreement on evaluating the report’s semantics and correctness for radiologistMIMIC is 0.62 (strict agreement) and 0.85 (relaxed agreement) similar to the radiologist-CAD agreement of 0.55 (strict) and 0.93 (relaxed). Our work found and corrected several incorrect or missing metadata annotations for the MIMIC-CXR dataset, and the performance of our CAD system suggests performance on par with human radiologists. Future improvements revolve around improved text generation and the development of CV tools for other diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信