数字风险评分能灵敏地识别是否存在α-突触核蛋白聚集或多巴胺能缺陷

Ann-Kathrin Schalkamp, Kathryn J Peall, Neil A Harrison, Valentina Escott-Price, Payam Barnaghi, Cynthia Sandor
{"title":"数字风险评分能灵敏地识别是否存在α-突触核蛋白聚集或多巴胺能缺陷","authors":"Ann-Kathrin Schalkamp, Kathryn J Peall, Neil A Harrison, Valentina Escott-Price, Payam Barnaghi, Cynthia Sandor","doi":"10.1101/2024.09.05.24313156","DOIUrl":null,"url":null,"abstract":"<strong>Background</strong> Use of digital sensors to passively collect long-term offers a step change in our ability to screen for early signs of disease in the general population. Smartwatch data has been shown to identify Parkinson’s disease (PD) several years before the clinical diagnosis, however, has not been evaluated in comparison to biological and pathological markers such as dopaminergic imaging (DaTscan) or cerebrospinal fluid (CSF) alpha-synuclein seed amplification assay (SAA) in an at-risk cohort.","PeriodicalId":501454,"journal":{"name":"medRxiv - Health Informatics","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital risk score sensitively identifies presence of α-synuclein aggregation or dopaminergic deficit\",\"authors\":\"Ann-Kathrin Schalkamp, Kathryn J Peall, Neil A Harrison, Valentina Escott-Price, Payam Barnaghi, Cynthia Sandor\",\"doi\":\"10.1101/2024.09.05.24313156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Background</strong> Use of digital sensors to passively collect long-term offers a step change in our ability to screen for early signs of disease in the general population. Smartwatch data has been shown to identify Parkinson’s disease (PD) several years before the clinical diagnosis, however, has not been evaluated in comparison to biological and pathological markers such as dopaminergic imaging (DaTscan) or cerebrospinal fluid (CSF) alpha-synuclein seed amplification assay (SAA) in an at-risk cohort.\",\"PeriodicalId\":501454,\"journal\":{\"name\":\"medRxiv - Health Informatics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.05.24313156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.05.24313156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景 使用数字传感器来长期被动地收集数据,为我们筛查普通人群疾病早期征兆的能力提供了一个进步。智能手表数据已被证明可在临床诊断前几年识别帕金森病(PD),但尚未在高危人群中与多巴胺能成像(DaTscan)或脑脊液(CSF)α-突触核蛋白种子扩增试验(SAA)等生物和病理标记物进行比较评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital risk score sensitively identifies presence of α-synuclein aggregation or dopaminergic deficit
Background Use of digital sensors to passively collect long-term offers a step change in our ability to screen for early signs of disease in the general population. Smartwatch data has been shown to identify Parkinson’s disease (PD) several years before the clinical diagnosis, however, has not been evaluated in comparison to biological and pathological markers such as dopaminergic imaging (DaTscan) or cerebrospinal fluid (CSF) alpha-synuclein seed amplification assay (SAA) in an at-risk cohort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信