Eva Maria Valerio de Sousa, Ajay Kumar, Charlie Coupland, Tânia F. Vaz, Will Jones, Rubén Valcarce-Diñeiro, Simon D.J. Calaminus
{"title":"U-Net 是一种基于深度学习的显微图像血小板分割方法","authors":"Eva Maria Valerio de Sousa, Ajay Kumar, Charlie Coupland, Tânia F. Vaz, Will Jones, Rubén Valcarce-Diñeiro, Simon D.J. Calaminus","doi":"10.1101/2024.08.23.24312502","DOIUrl":null,"url":null,"abstract":"Manual counting of platelets, in microscopy images, is greatly time-consuming. Our goal was to automatically segment and count platelets images using a deep learning approach, applying U-Net and Fully Convolutional Network (FCN) modelling. Data preprocessing was done by creating binary masks and utilizing supervised learning with ground-truth labels. Data augmentation was implemented, for improved model robustness and detection. The number of detected regions was then retrieved as a count. The study investigated the U-Net models performance with different datasets, indicating notable improvements in segmentation metrics as the dataset size increased, while FCN performance was only evaluated with the smaller dataset and abandoned due to poor results. U-Net surpassed FCN in both detection and counting measures in the smaller dataset Dice 0.90, accuracy of 0.96 (U-Net) vs Dice 0.60 and 0.81 (FCN). When tested in a bigger dataset U-Net produced even better values (Dice 0.99, accuracy of 0.98). The U-Net model proves to be particularly effective as the dataset size increases, showcasing its versatility and accuracy in handling varying cell sizes and appearances. These data show potential areas for further improvement and the promising application of deep learning in automating cell segmentation for diverse life science research applications.","PeriodicalId":501454,"journal":{"name":"medRxiv - Health Informatics","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"U-Net as a deep learning-based method for platelets segmentation in microscopic images\",\"authors\":\"Eva Maria Valerio de Sousa, Ajay Kumar, Charlie Coupland, Tânia F. Vaz, Will Jones, Rubén Valcarce-Diñeiro, Simon D.J. Calaminus\",\"doi\":\"10.1101/2024.08.23.24312502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manual counting of platelets, in microscopy images, is greatly time-consuming. Our goal was to automatically segment and count platelets images using a deep learning approach, applying U-Net and Fully Convolutional Network (FCN) modelling. Data preprocessing was done by creating binary masks and utilizing supervised learning with ground-truth labels. Data augmentation was implemented, for improved model robustness and detection. The number of detected regions was then retrieved as a count. The study investigated the U-Net models performance with different datasets, indicating notable improvements in segmentation metrics as the dataset size increased, while FCN performance was only evaluated with the smaller dataset and abandoned due to poor results. U-Net surpassed FCN in both detection and counting measures in the smaller dataset Dice 0.90, accuracy of 0.96 (U-Net) vs Dice 0.60 and 0.81 (FCN). When tested in a bigger dataset U-Net produced even better values (Dice 0.99, accuracy of 0.98). The U-Net model proves to be particularly effective as the dataset size increases, showcasing its versatility and accuracy in handling varying cell sizes and appearances. These data show potential areas for further improvement and the promising application of deep learning in automating cell segmentation for diverse life science research applications.\",\"PeriodicalId\":501454,\"journal\":{\"name\":\"medRxiv - Health Informatics\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.23.24312502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.23.24312502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
U-Net as a deep learning-based method for platelets segmentation in microscopic images
Manual counting of platelets, in microscopy images, is greatly time-consuming. Our goal was to automatically segment and count platelets images using a deep learning approach, applying U-Net and Fully Convolutional Network (FCN) modelling. Data preprocessing was done by creating binary masks and utilizing supervised learning with ground-truth labels. Data augmentation was implemented, for improved model robustness and detection. The number of detected regions was then retrieved as a count. The study investigated the U-Net models performance with different datasets, indicating notable improvements in segmentation metrics as the dataset size increased, while FCN performance was only evaluated with the smaller dataset and abandoned due to poor results. U-Net surpassed FCN in both detection and counting measures in the smaller dataset Dice 0.90, accuracy of 0.96 (U-Net) vs Dice 0.60 and 0.81 (FCN). When tested in a bigger dataset U-Net produced even better values (Dice 0.99, accuracy of 0.98). The U-Net model proves to be particularly effective as the dataset size increases, showcasing its versatility and accuracy in handling varying cell sizes and appearances. These data show potential areas for further improvement and the promising application of deep learning in automating cell segmentation for diverse life science research applications.