丝氨酸手性引导一碳代谢和神经调节剂合成之间的代谢流

Masataka Suzuki, Kenichiro Adachi, Pattama Wiriyasermukul, Mariko Fukumura, Ryota Tamura, Yoshinori Hirano, Yumi Aizawa, Tetsuya Miyamoto, Sakiko Taniguchi, Masahiro Toda, Hiroshi Homma, Kohsuke Kanekura, Kenji Yasuoka, Takanori Kanai, Masahiro Sugimoto, Shushi Nagamori, Masato Yasui, Jumpei Sasabe
{"title":"丝氨酸手性引导一碳代谢和神经调节剂合成之间的代谢流","authors":"Masataka Suzuki, Kenichiro Adachi, Pattama Wiriyasermukul, Mariko Fukumura, Ryota Tamura, Yoshinori Hirano, Yumi Aizawa, Tetsuya Miyamoto, Sakiko Taniguchi, Masahiro Toda, Hiroshi Homma, Kohsuke Kanekura, Kenji Yasuoka, Takanori Kanai, Masahiro Sugimoto, Shushi Nagamori, Masato Yasui, Jumpei Sasabe","doi":"10.1101/2024.09.03.610855","DOIUrl":null,"url":null,"abstract":"Neural development requires metabolic adaptations that coincide with a functional shift from differentiation to neurotransmission. Serine metabolism provides essential metabolites for cellular growth and proliferation, and also produces neurotransmitters. However, how serine metabolism coordinates functional development of neurons remains unclear. Here, we report that neurons undergo metabolic transitions through an enantiomeric shift of serine during functional maturation. Developmental alterations of neural transcriptional profiles and serine enantiomers indicated that L- to D-serine conversion is a signature of neural maturation. Metabolomic analysis of neural progenitors revealed that D-serine decreases glycine synthesis, thereby suppressing one-carbon metabolism, in which L-serine is a crucial carbon donor. D-serine inhibits one-carbon metabolism by competing with transport of cytosolic L-serine to mitochondria, which restrains proliferation and triggers apoptosis of neural progenitors as well as neural tumor cells, but not mature neurons, in vitro and ex vivo. Thus, our findings suggest that the metabolic transition from L- to D-serine during neural maturation inhibits one-carbon metabolism essential for proliferation of immature neural cells, leading to acquisition of characteristics tailored to functional development toward neurotransmission.","PeriodicalId":501269,"journal":{"name":"bioRxiv - Developmental Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Serine chirality guides metabolic flow between one-carbon metabolism and neuromodulator synthesis\",\"authors\":\"Masataka Suzuki, Kenichiro Adachi, Pattama Wiriyasermukul, Mariko Fukumura, Ryota Tamura, Yoshinori Hirano, Yumi Aizawa, Tetsuya Miyamoto, Sakiko Taniguchi, Masahiro Toda, Hiroshi Homma, Kohsuke Kanekura, Kenji Yasuoka, Takanori Kanai, Masahiro Sugimoto, Shushi Nagamori, Masato Yasui, Jumpei Sasabe\",\"doi\":\"10.1101/2024.09.03.610855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural development requires metabolic adaptations that coincide with a functional shift from differentiation to neurotransmission. Serine metabolism provides essential metabolites for cellular growth and proliferation, and also produces neurotransmitters. However, how serine metabolism coordinates functional development of neurons remains unclear. Here, we report that neurons undergo metabolic transitions through an enantiomeric shift of serine during functional maturation. Developmental alterations of neural transcriptional profiles and serine enantiomers indicated that L- to D-serine conversion is a signature of neural maturation. Metabolomic analysis of neural progenitors revealed that D-serine decreases glycine synthesis, thereby suppressing one-carbon metabolism, in which L-serine is a crucial carbon donor. D-serine inhibits one-carbon metabolism by competing with transport of cytosolic L-serine to mitochondria, which restrains proliferation and triggers apoptosis of neural progenitors as well as neural tumor cells, but not mature neurons, in vitro and ex vivo. Thus, our findings suggest that the metabolic transition from L- to D-serine during neural maturation inhibits one-carbon metabolism essential for proliferation of immature neural cells, leading to acquisition of characteristics tailored to functional development toward neurotransmission.\",\"PeriodicalId\":501269,\"journal\":{\"name\":\"bioRxiv - Developmental Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.03.610855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.03.610855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经发育需要新陈代谢的适应,这种适应与从分化到神经传递的功能转变相吻合。丝氨酸代谢提供了细胞生长和增殖所必需的代谢物,同时也产生神经递质。然而,丝氨酸代谢如何协调神经元的功能发育仍不清楚。在这里,我们报告了神经元在功能成熟过程中通过丝氨酸对映体的转变而发生的代谢转变。神经转录谱和丝氨酸对映体的发育改变表明,L-丝氨酸到 D-丝氨酸的转换是神经成熟的标志。神经祖细胞的代谢组分析表明,D-丝氨酸会减少甘氨酸的合成,从而抑制一碳代谢,而在一碳代谢中,L-丝氨酸是重要的碳供体。D-丝氨酸通过竞争细胞膜L-丝氨酸向线粒体的运输来抑制一碳代谢,从而抑制神经祖细胞和神经肿瘤细胞的增殖并引发其凋亡,但不包括体外和体内的成熟神经元。因此,我们的研究结果表明,神经成熟过程中从 L-丝氨酸到 D-丝氨酸的代谢转变抑制了未成熟神经细胞增殖所必需的一碳代谢,导致神经细胞获得适合向神经传递功能发展的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Serine chirality guides metabolic flow between one-carbon metabolism and neuromodulator synthesis
Neural development requires metabolic adaptations that coincide with a functional shift from differentiation to neurotransmission. Serine metabolism provides essential metabolites for cellular growth and proliferation, and also produces neurotransmitters. However, how serine metabolism coordinates functional development of neurons remains unclear. Here, we report that neurons undergo metabolic transitions through an enantiomeric shift of serine during functional maturation. Developmental alterations of neural transcriptional profiles and serine enantiomers indicated that L- to D-serine conversion is a signature of neural maturation. Metabolomic analysis of neural progenitors revealed that D-serine decreases glycine synthesis, thereby suppressing one-carbon metabolism, in which L-serine is a crucial carbon donor. D-serine inhibits one-carbon metabolism by competing with transport of cytosolic L-serine to mitochondria, which restrains proliferation and triggers apoptosis of neural progenitors as well as neural tumor cells, but not mature neurons, in vitro and ex vivo. Thus, our findings suggest that the metabolic transition from L- to D-serine during neural maturation inhibits one-carbon metabolism essential for proliferation of immature neural cells, leading to acquisition of characteristics tailored to functional development toward neurotransmission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信