急性蛋氨酸饮食限制凸显了新皮层发育对代谢变化的敏感性

Sulov Saha, Clemence Debacq, Christophe Audouard, Thomas Jungas, Pierrick Dupre, Mohamad Ali Fawal, Clement Chapat, Henri-Alexandre Michaud, Laurent Le Cam, Matthieu Lacroix, David Ohayon, Alice Davy
{"title":"急性蛋氨酸饮食限制凸显了新皮层发育对代谢变化的敏感性","authors":"Sulov Saha, Clemence Debacq, Christophe Audouard, Thomas Jungas, Pierrick Dupre, Mohamad Ali Fawal, Clement Chapat, Henri-Alexandre Michaud, Laurent Le Cam, Matthieu Lacroix, David Ohayon, Alice Davy","doi":"10.1101/2024.09.10.612174","DOIUrl":null,"url":null,"abstract":"Methionine, an essential amino acid that has to be provided by nutrition, and its metabolite S-Adenosyl methionine (SAM) are indispensable for cell proliferation, stem cell maintenance and epigenetic regulation, three processes that are central to embryonic development. Previous studies using chronic dietary restriction of methyl donors prior to and during gestation indicated that methionine restriction (MR) is detrimental to the development or growth of the neocortex, however, the consequences of acute MR have not been extensively studied. Here, we designed a dietary MR regime coinciding with the neurogenic phases of neocortex development in the mouse. Our results indicate that dietary MR for 5 days leads to a severe reduction in neocortex growth and neuronal production. In comparison, growth of the liver and heart was unaffected, highlighting an organ-specific response to MR which was also observed at the cellular and molecular levels. Progenitor cohort labeling revealed a time-dependent sensitivity to MR and cell cycle analyses indicated that after 5 days of MR, progenitors are stalled in the S/G2 phases. Unexpectedly, neocortex growth reduction induced after 5 days of MR is completely rescued at birth when switching the dam back to control diet for the remaining of gestation, uncovering a mechanism of catch-up growth. Using multiplexed imaging we probed metabolic and epigenetic markers following MR and during catch-up growth and show that pyruvate metabolism is rewired in progenitors. Altogether, our data uncover a transient state of quiescence in G2/S which is metabolically distinct from G0 quiescence and associated with efficient catch-up growth. More globally, our study highlights both the extreme sensitivity of the developing neocortex to acute dietary changes and its remarkable plasticity.","PeriodicalId":501269,"journal":{"name":"bioRxiv - Developmental Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute dietary methionine restriction highlights sensitivity of neocortex development to metabolic variations\",\"authors\":\"Sulov Saha, Clemence Debacq, Christophe Audouard, Thomas Jungas, Pierrick Dupre, Mohamad Ali Fawal, Clement Chapat, Henri-Alexandre Michaud, Laurent Le Cam, Matthieu Lacroix, David Ohayon, Alice Davy\",\"doi\":\"10.1101/2024.09.10.612174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methionine, an essential amino acid that has to be provided by nutrition, and its metabolite S-Adenosyl methionine (SAM) are indispensable for cell proliferation, stem cell maintenance and epigenetic regulation, three processes that are central to embryonic development. Previous studies using chronic dietary restriction of methyl donors prior to and during gestation indicated that methionine restriction (MR) is detrimental to the development or growth of the neocortex, however, the consequences of acute MR have not been extensively studied. Here, we designed a dietary MR regime coinciding with the neurogenic phases of neocortex development in the mouse. Our results indicate that dietary MR for 5 days leads to a severe reduction in neocortex growth and neuronal production. In comparison, growth of the liver and heart was unaffected, highlighting an organ-specific response to MR which was also observed at the cellular and molecular levels. Progenitor cohort labeling revealed a time-dependent sensitivity to MR and cell cycle analyses indicated that after 5 days of MR, progenitors are stalled in the S/G2 phases. Unexpectedly, neocortex growth reduction induced after 5 days of MR is completely rescued at birth when switching the dam back to control diet for the remaining of gestation, uncovering a mechanism of catch-up growth. Using multiplexed imaging we probed metabolic and epigenetic markers following MR and during catch-up growth and show that pyruvate metabolism is rewired in progenitors. Altogether, our data uncover a transient state of quiescence in G2/S which is metabolically distinct from G0 quiescence and associated with efficient catch-up growth. More globally, our study highlights both the extreme sensitivity of the developing neocortex to acute dietary changes and its remarkable plasticity.\",\"PeriodicalId\":501269,\"journal\":{\"name\":\"bioRxiv - Developmental Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.10.612174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.10.612174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蛋氨酸是一种必须由营养提供的必需氨基酸,其代谢产物 S-腺苷蛋氨酸(SAM)是细胞增殖、干细胞维持和表观遗传调控不可或缺的物质,这三个过程是胚胎发育的核心。以往在妊娠前和妊娠期间使用甲基供体慢性饮食限制的研究表明,蛋氨酸限制(MR)不利于新皮质的发育或生长,但急性 MR 的后果尚未得到广泛研究。在此,我们设计了一种与小鼠新皮层神经元发育阶段相吻合的蛋氨酸膳食机制。我们的研究结果表明,连续 5 天摄入 MR 会导致新皮质生长和神经元生成严重减少。相比之下,肝脏和心脏的生长未受影响,这凸显了器官对 MR 的特异性反应,在细胞和分子水平上也观察到了这种反应。祖细胞群标记显示了对MR的敏感性随时间变化,细胞周期分析表明,MR作用5天后,祖细胞停滞在S/G2期。出乎意料的是,当母鼠在妊娠期剩余时间里改回对照组饮食时,5天MR诱导的新皮质生长减少在出生时完全恢复,这揭示了一种追赶生长的机制。我们利用多路复用成像技术探测了核磁共振后和追赶生长期间的代谢和表观遗传标记,结果表明丙酮酸代谢在祖细胞中被重新连接。总之,我们的数据揭示了 G2/S 阶段的瞬时静止状态,这种状态在代谢上有别于 G0 静止状态,并与高效的追赶生长有关。更广泛地说,我们的研究凸显了发育中的新皮质对急性饮食变化的极端敏感性及其显著的可塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acute dietary methionine restriction highlights sensitivity of neocortex development to metabolic variations
Methionine, an essential amino acid that has to be provided by nutrition, and its metabolite S-Adenosyl methionine (SAM) are indispensable for cell proliferation, stem cell maintenance and epigenetic regulation, three processes that are central to embryonic development. Previous studies using chronic dietary restriction of methyl donors prior to and during gestation indicated that methionine restriction (MR) is detrimental to the development or growth of the neocortex, however, the consequences of acute MR have not been extensively studied. Here, we designed a dietary MR regime coinciding with the neurogenic phases of neocortex development in the mouse. Our results indicate that dietary MR for 5 days leads to a severe reduction in neocortex growth and neuronal production. In comparison, growth of the liver and heart was unaffected, highlighting an organ-specific response to MR which was also observed at the cellular and molecular levels. Progenitor cohort labeling revealed a time-dependent sensitivity to MR and cell cycle analyses indicated that after 5 days of MR, progenitors are stalled in the S/G2 phases. Unexpectedly, neocortex growth reduction induced after 5 days of MR is completely rescued at birth when switching the dam back to control diet for the remaining of gestation, uncovering a mechanism of catch-up growth. Using multiplexed imaging we probed metabolic and epigenetic markers following MR and during catch-up growth and show that pyruvate metabolism is rewired in progenitors. Altogether, our data uncover a transient state of quiescence in G2/S which is metabolically distinct from G0 quiescence and associated with efficient catch-up growth. More globally, our study highlights both the extreme sensitivity of the developing neocortex to acute dietary changes and its remarkable plasticity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信