Przemysław Sadowski, Mohsen Rezaee-Hajidehi, Stanisław Stupkiewicz
{"title":"作为位移转变的变形孪晶:与晶体塑性耦合的相场模型的计算问题","authors":"Przemysław Sadowski, Mohsen Rezaee-Hajidehi, Stanisław Stupkiewicz","doi":"10.1007/s00466-024-02533-w","DOIUrl":null,"url":null,"abstract":"<p>Spatially-resolved modeling of deformation twinning and its interaction with plastic slip is achieved by coupling the phase-field method and crystal plasticity theory. The intricate constitutive relations arising from this coupling render the resulting computational model prone to inefficiencies and lack of robustness. Accordingly, together with the inherent limitations of the phase-field method, these factors may impede the broad applicability of the model. In this paper, our recent phase-field model of coupled twinning and crystal plasticity is the subject of study. We delve into the incremental formulation and computational treatment of the model and run a thorough investigation into its computational performance. We focus specifically on evaluating the efficiency of the finite-element discretization employing various element types, and we examine the impact of mesh density. Since the micromorphic regularization is an important part of the finite-element implementation, the effect of the micromorphic regularization parameter is also studied.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"13 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation twinning as a displacive transformation: computational aspects of the phase-field model coupled with crystal plasticity\",\"authors\":\"Przemysław Sadowski, Mohsen Rezaee-Hajidehi, Stanisław Stupkiewicz\",\"doi\":\"10.1007/s00466-024-02533-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spatially-resolved modeling of deformation twinning and its interaction with plastic slip is achieved by coupling the phase-field method and crystal plasticity theory. The intricate constitutive relations arising from this coupling render the resulting computational model prone to inefficiencies and lack of robustness. Accordingly, together with the inherent limitations of the phase-field method, these factors may impede the broad applicability of the model. In this paper, our recent phase-field model of coupled twinning and crystal plasticity is the subject of study. We delve into the incremental formulation and computational treatment of the model and run a thorough investigation into its computational performance. We focus specifically on evaluating the efficiency of the finite-element discretization employing various element types, and we examine the impact of mesh density. Since the micromorphic regularization is an important part of the finite-element implementation, the effect of the micromorphic regularization parameter is also studied.</p>\",\"PeriodicalId\":55248,\"journal\":{\"name\":\"Computational Mechanics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00466-024-02533-w\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02533-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Deformation twinning as a displacive transformation: computational aspects of the phase-field model coupled with crystal plasticity
Spatially-resolved modeling of deformation twinning and its interaction with plastic slip is achieved by coupling the phase-field method and crystal plasticity theory. The intricate constitutive relations arising from this coupling render the resulting computational model prone to inefficiencies and lack of robustness. Accordingly, together with the inherent limitations of the phase-field method, these factors may impede the broad applicability of the model. In this paper, our recent phase-field model of coupled twinning and crystal plasticity is the subject of study. We delve into the incremental formulation and computational treatment of the model and run a thorough investigation into its computational performance. We focus specifically on evaluating the efficiency of the finite-element discretization employing various element types, and we examine the impact of mesh density. Since the micromorphic regularization is an important part of the finite-element implementation, the effect of the micromorphic regularization parameter is also studied.
期刊介绍:
The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies.
Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged.
Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.