FiST--金融风格转移与幻觉和创造力控制框架

Sohini Roychowdhury, Marko Krema, Brian Moore, Xingjian Lai, Dike Effedua, Bharat Jethwani
{"title":"FiST--金融风格转移与幻觉和创造力控制框架","authors":"Sohini Roychowdhury, Marko Krema, Brian Moore, Xingjian Lai, Dike Effedua, Bharat Jethwani","doi":"arxiv-2408.05365","DOIUrl":null,"url":null,"abstract":"Financial report generation using general purpose large language models pose\ntwo major challenges, including the lack of compound sentences and\nhallucinations. Advanced prompt engineering and retrieval augmented generation\n(RAG) techniques are incapable of curing the writing style discrepancies. In\nthis work we propose a novel two-stage fine-tuning process wherein public\ndomain financial reports are processed into prompt-completions and augmented\nusing simple LLM prompts to then enable sectional financial report generation\nusing minimal instructions and tabular data inputs. Our proposed fine-tuning\nframework results doubles the number of correct questions answers and reduces\nhallucinations by over 50%. Additionally, the two-stage fine tuned models have\nlower perplexity, improved ROUGE, TER and BLEU scores, higher creativity and\nknowledge density with lower uncertainty and cross entropy.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FiST-Financial Style Transfer with Hallucination and Creativity Control Framework\",\"authors\":\"Sohini Roychowdhury, Marko Krema, Brian Moore, Xingjian Lai, Dike Effedua, Bharat Jethwani\",\"doi\":\"arxiv-2408.05365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Financial report generation using general purpose large language models pose\\ntwo major challenges, including the lack of compound sentences and\\nhallucinations. Advanced prompt engineering and retrieval augmented generation\\n(RAG) techniques are incapable of curing the writing style discrepancies. In\\nthis work we propose a novel two-stage fine-tuning process wherein public\\ndomain financial reports are processed into prompt-completions and augmented\\nusing simple LLM prompts to then enable sectional financial report generation\\nusing minimal instructions and tabular data inputs. Our proposed fine-tuning\\nframework results doubles the number of correct questions answers and reduces\\nhallucinations by over 50%. Additionally, the two-stage fine tuned models have\\nlower perplexity, improved ROUGE, TER and BLEU scores, higher creativity and\\nknowledge density with lower uncertainty and cross entropy.\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用通用大型语言模型生成财务报告面临两大挑战,包括缺乏复合句和幻觉。先进的提示工程和检索增强生成(RAG)技术无法解决写作风格差异问题。在这项工作中,我们提出了一种新颖的两阶段微调流程,将公共领域的财务报告处理为提示完成语,并使用简单的 LLM 提示语进行增强,然后使用最少的指令和表格数据输入生成分节财务报告。我们提出的微调框架使问题答案的正确率提高了一倍,减少了 50% 以上的误解。此外,经过两阶段微调的模型具有更低的困惑度,更高的 ROUGE、TER 和 BLEU 分数,更高的创造力和知识密度,以及更低的不确定性和交叉熵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FiST-Financial Style Transfer with Hallucination and Creativity Control Framework
Financial report generation using general purpose large language models pose two major challenges, including the lack of compound sentences and hallucinations. Advanced prompt engineering and retrieval augmented generation (RAG) techniques are incapable of curing the writing style discrepancies. In this work we propose a novel two-stage fine-tuning process wherein public domain financial reports are processed into prompt-completions and augmented using simple LLM prompts to then enable sectional financial report generation using minimal instructions and tabular data inputs. Our proposed fine-tuning framework results doubles the number of correct questions answers and reduces hallucinations by over 50%. Additionally, the two-stage fine tuned models have lower perplexity, improved ROUGE, TER and BLEU scores, higher creativity and knowledge density with lower uncertainty and cross entropy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信