HyperCAN:超网络驱动的超材料深度参数化构造模型

Li Zheng, Dennis M. Kochmann, Siddhant Kumar
{"title":"HyperCAN:超网络驱动的超材料深度参数化构造模型","authors":"Li Zheng, Dennis M. Kochmann, Siddhant Kumar","doi":"arxiv-2408.06017","DOIUrl":null,"url":null,"abstract":"We introduce HyperCAN, a machine learning framework that utilizes\nhypernetworks to construct adaptable constitutive artificial neural networks\nfor a wide range of beam-based metamaterials exhibiting diverse mechanical\nbehavior under finite deformations. HyperCAN integrates an input convex network\nthat models the nonlinear stress-strain map of a truss lattice, while ensuring\nadherence to fundamental mechanics principles, along with a hypernetwork that\ndynamically adjusts the parameters of the convex network as a function of the\nlattice topology and geometry. This unified framework demonstrates robust\ngeneralization in predicting the mechanical behavior of previously unseen\nmetamaterial designs and loading scenarios well beyond the training domain. We\nshow how HyperCAN can be integrated into multiscale simulations to accurately\ncapture the highly nonlinear responses of large-scale truss metamaterials,\nclosely matching fully resolved simulations while significantly reducing\ncomputational costs. This offers new efficient opportunities for the multiscale\ndesign and optimization of truss metamaterials.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HyperCAN: Hypernetwork-Driven Deep Parameterized Constitutive Models for Metamaterials\",\"authors\":\"Li Zheng, Dennis M. Kochmann, Siddhant Kumar\",\"doi\":\"arxiv-2408.06017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce HyperCAN, a machine learning framework that utilizes\\nhypernetworks to construct adaptable constitutive artificial neural networks\\nfor a wide range of beam-based metamaterials exhibiting diverse mechanical\\nbehavior under finite deformations. HyperCAN integrates an input convex network\\nthat models the nonlinear stress-strain map of a truss lattice, while ensuring\\nadherence to fundamental mechanics principles, along with a hypernetwork that\\ndynamically adjusts the parameters of the convex network as a function of the\\nlattice topology and geometry. This unified framework demonstrates robust\\ngeneralization in predicting the mechanical behavior of previously unseen\\nmetamaterial designs and loading scenarios well beyond the training domain. We\\nshow how HyperCAN can be integrated into multiscale simulations to accurately\\ncapture the highly nonlinear responses of large-scale truss metamaterials,\\nclosely matching fully resolved simulations while significantly reducing\\ncomputational costs. This offers new efficient opportunities for the multiscale\\ndesign and optimization of truss metamaterials.\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍的 HyperCAN 是一种机器学习框架,它利用超网络为各种基于梁的超材料构建可适应的构成性人工神经网络,这些超材料在有限变形条件下表现出不同的力学行为。HyperCAN 集成了一个输入凸网络和一个超网络,前者对桁架晶格的非线性应力应变图进行建模,同时确保符合基本力学原理,后者可根据晶格的拓扑结构和几何形状动态调整凸网络的参数。这个统一的框架在预测以前从未见过的材料设计和加载场景的力学行为方面具有强大的通用性,远远超出了训练领域。我们展示了如何将 HyperCAN 集成到多尺度模拟中,以准确捕捉大规模桁架超材料的高度非线性响应,使其与全解析模拟密切匹配,同时显著降低计算成本。这为桁架超材料的多尺度设计和优化提供了新的高效机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HyperCAN: Hypernetwork-Driven Deep Parameterized Constitutive Models for Metamaterials
We introduce HyperCAN, a machine learning framework that utilizes hypernetworks to construct adaptable constitutive artificial neural networks for a wide range of beam-based metamaterials exhibiting diverse mechanical behavior under finite deformations. HyperCAN integrates an input convex network that models the nonlinear stress-strain map of a truss lattice, while ensuring adherence to fundamental mechanics principles, along with a hypernetwork that dynamically adjusts the parameters of the convex network as a function of the lattice topology and geometry. This unified framework demonstrates robust generalization in predicting the mechanical behavior of previously unseen metamaterial designs and loading scenarios well beyond the training domain. We show how HyperCAN can be integrated into multiscale simulations to accurately capture the highly nonlinear responses of large-scale truss metamaterials, closely matching fully resolved simulations while significantly reducing computational costs. This offers new efficient opportunities for the multiscale design and optimization of truss metamaterials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信