随机载荷下振动声学问题的高效低阶模型阶次缩减

Yannik Hüpel, Ulrich Römer, Matthias Bollhöfer, Sabine Langer
{"title":"随机载荷下振动声学问题的高效低阶模型阶次缩减","authors":"Yannik Hüpel, Ulrich Römer, Matthias Bollhöfer, Sabine Langer","doi":"arxiv-2408.08402","DOIUrl":null,"url":null,"abstract":"This contribution combines a low-rank matrix approximation through Singular\nValue Decomposition (SVD) with second-order Krylov subspace-based Model Order\nReduction (MOR), in order to efficiently propagate input uncertainties through\na given vibroacoustic model. The vibroacoustic model consists of a plate\ncoupled to a fluid into which the plate radiates sound due to a turbulent\nboundary layer excitation. This excitation is subject to uncertainties due to\nthe stochastic nature of the turbulence and the computational cost of\nsimulating the coupled problem with stochastic forcing is very high. The\nproposed method approximates the output uncertainties in an efficient way, by\nreducing the evaluation cost of the model in terms of DOFs and samples by using\nthe factors of the SVD low-rank approximation directly as input for the MOR\nalgorithm. Here, the covariance matrix of the vector of unknowns can\nefficiently be approximated with only a fraction of the original number of\nevaluations. Therefore, the approach is a promising step to further reducing\nthe computational effort of large-scale vibroacoustic evaluations.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient low rank model order reduction of vibroacoustic problems under stochastic loads\",\"authors\":\"Yannik Hüpel, Ulrich Römer, Matthias Bollhöfer, Sabine Langer\",\"doi\":\"arxiv-2408.08402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This contribution combines a low-rank matrix approximation through Singular\\nValue Decomposition (SVD) with second-order Krylov subspace-based Model Order\\nReduction (MOR), in order to efficiently propagate input uncertainties through\\na given vibroacoustic model. The vibroacoustic model consists of a plate\\ncoupled to a fluid into which the plate radiates sound due to a turbulent\\nboundary layer excitation. This excitation is subject to uncertainties due to\\nthe stochastic nature of the turbulence and the computational cost of\\nsimulating the coupled problem with stochastic forcing is very high. The\\nproposed method approximates the output uncertainties in an efficient way, by\\nreducing the evaluation cost of the model in terms of DOFs and samples by using\\nthe factors of the SVD low-rank approximation directly as input for the MOR\\nalgorithm. Here, the covariance matrix of the vector of unknowns can\\nefficiently be approximated with only a fraction of the original number of\\nevaluations. Therefore, the approach is a promising step to further reducing\\nthe computational effort of large-scale vibroacoustic evaluations.\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本论文通过奇异值分解(SVD)将低秩矩阵近似与基于二阶克雷洛夫子空间的模型阶次还原(MOR)相结合,以便通过给定的振动声学模型有效传播输入不确定性。振动声学模型包括一个与流体耦合的平板,平板在湍流边界层激励下向流体辐射声音。由于湍流的随机性,这种激励具有不确定性,而模拟具有随机激励的耦合问题的计算成本非常高。所提出的方法通过直接使用 SVD 低阶近似的因子作为 MOR 算法的输入,降低了模型在 DOF 和样本方面的评估成本,从而以一种高效的方式近似了输出的不确定性。在这里,只需原来评估次数的一小部分,就能有效地逼近未知向量的协方差矩阵。因此,该方法有望进一步减少大规模振动声学评估的计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient low rank model order reduction of vibroacoustic problems under stochastic loads
This contribution combines a low-rank matrix approximation through Singular Value Decomposition (SVD) with second-order Krylov subspace-based Model Order Reduction (MOR), in order to efficiently propagate input uncertainties through a given vibroacoustic model. The vibroacoustic model consists of a plate coupled to a fluid into which the plate radiates sound due to a turbulent boundary layer excitation. This excitation is subject to uncertainties due to the stochastic nature of the turbulence and the computational cost of simulating the coupled problem with stochastic forcing is very high. The proposed method approximates the output uncertainties in an efficient way, by reducing the evaluation cost of the model in terms of DOFs and samples by using the factors of the SVD low-rank approximation directly as input for the MOR algorithm. Here, the covariance matrix of the vector of unknowns can efficiently be approximated with only a fraction of the original number of evaluations. Therefore, the approach is a promising step to further reducing the computational effort of large-scale vibroacoustic evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信