多学科贝叶斯优化的分区代理和汤普森取样

Susanna Baars, Jigar Parekh, Ihar Antonau, Philipp Bekemeyer, Ulrich Römer
{"title":"多学科贝叶斯优化的分区代理和汤普森取样","authors":"Susanna Baars, Jigar Parekh, Ihar Antonau, Philipp Bekemeyer, Ulrich Römer","doi":"arxiv-2408.08691","DOIUrl":null,"url":null,"abstract":"The long runtime associated with simulating multidisciplinary systems\nchallenges the use of Bayesian optimization for multidisciplinary design\noptimization (MDO). This is particularly the case if the coupled system is\nmodeled in a partitioned manner and feedback loops, known as strong coupling,\nare present. This work introduces a method for Bayesian optimization in MDO\ncalled \"Multidisciplinary Design Optimization using Thompson Sampling\",\nabbreviated as MDO-TS. Instead of replacing the whole system with a surrogate,\nwe substitute each discipline with such a Gaussian process. Since an entire\nmultidisciplinary analysis is no longer required for enrichment, evaluations\ncan potentially be saved. However, the objective and associated uncertainty are\nno longer analytically estimated. Since most adaptive sampling strategies\nassume the availability of these estimates, they cannot be applied without\nmodification. Thompson sampling does not require this explicit availability.\nInstead, Thompson sampling balances exploration and exploitation by selecting\nactions based on optimizing random samples from the objective. We combine\nThompson sampling with an approximate sampling strategy that uses random\nFourier features. This approach produces continuous functions that can be\nevaluated iteratively. We study the application of this infill criterion to\nboth an analytical problem and the shape optimization of a simple\nfluid-structure interaction example.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partitioned Surrogates and Thompson Sampling for Multidisciplinary Bayesian Optimization\",\"authors\":\"Susanna Baars, Jigar Parekh, Ihar Antonau, Philipp Bekemeyer, Ulrich Römer\",\"doi\":\"arxiv-2408.08691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The long runtime associated with simulating multidisciplinary systems\\nchallenges the use of Bayesian optimization for multidisciplinary design\\noptimization (MDO). This is particularly the case if the coupled system is\\nmodeled in a partitioned manner and feedback loops, known as strong coupling,\\nare present. This work introduces a method for Bayesian optimization in MDO\\ncalled \\\"Multidisciplinary Design Optimization using Thompson Sampling\\\",\\nabbreviated as MDO-TS. Instead of replacing the whole system with a surrogate,\\nwe substitute each discipline with such a Gaussian process. Since an entire\\nmultidisciplinary analysis is no longer required for enrichment, evaluations\\ncan potentially be saved. However, the objective and associated uncertainty are\\nno longer analytically estimated. Since most adaptive sampling strategies\\nassume the availability of these estimates, they cannot be applied without\\nmodification. Thompson sampling does not require this explicit availability.\\nInstead, Thompson sampling balances exploration and exploitation by selecting\\nactions based on optimizing random samples from the objective. We combine\\nThompson sampling with an approximate sampling strategy that uses random\\nFourier features. This approach produces continuous functions that can be\\nevaluated iteratively. We study the application of this infill criterion to\\nboth an analytical problem and the shape optimization of a simple\\nfluid-structure interaction example.\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多学科系统仿真的运行时间较长,这给使用贝叶斯优化技术进行多学科设计优化(MDO)带来了挑战。如果耦合系统以分区方式建模,并且存在反馈回路(即强耦合),则情况尤其如此。本研究介绍了一种在 MDO 中进行贝叶斯优化的方法,称为 "使用汤普森采样的多学科设计优化",简称 MDO-TS。我们不是用一个代理变量来代替整个系统,而是用这样一个高斯过程来代替每个学科。由于不再需要整个多学科分析来充实系统,因此有可能节省评估工作。但是,目标和相关的不确定性不再需要分析估计。由于大多数适应性取样策略都假定可以获得这些估计值,因此在不进行修改的情况下无法应用。汤普森取样不需要这种明确的可用性。相反,汤普森取样通过从目标中优化随机样本来选择行动,从而平衡了探索和开发。我们将汤普森采样与使用随机傅立叶特征的近似采样策略相结合。这种方法产生的连续函数可以进行迭代评估。我们研究了这种填充准则在一个分析问题和一个简单流体与结构相互作用实例的形状优化中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partitioned Surrogates and Thompson Sampling for Multidisciplinary Bayesian Optimization
The long runtime associated with simulating multidisciplinary systems challenges the use of Bayesian optimization for multidisciplinary design optimization (MDO). This is particularly the case if the coupled system is modeled in a partitioned manner and feedback loops, known as strong coupling, are present. This work introduces a method for Bayesian optimization in MDO called "Multidisciplinary Design Optimization using Thompson Sampling", abbreviated as MDO-TS. Instead of replacing the whole system with a surrogate, we substitute each discipline with such a Gaussian process. Since an entire multidisciplinary analysis is no longer required for enrichment, evaluations can potentially be saved. However, the objective and associated uncertainty are no longer analytically estimated. Since most adaptive sampling strategies assume the availability of these estimates, they cannot be applied without modification. Thompson sampling does not require this explicit availability. Instead, Thompson sampling balances exploration and exploitation by selecting actions based on optimizing random samples from the objective. We combine Thompson sampling with an approximate sampling strategy that uses random Fourier features. This approach produces continuous functions that can be evaluated iteratively. We study the application of this infill criterion to both an analytical problem and the shape optimization of a simple fluid-structure interaction example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信