在每份出版物中主动提供可重复的分析透明度

Paul Meijer, Nicole Howard, Jessica Liang, Autumn Kelsey, Sathya Subramanian, Ed Johnson, Paul Mariz, James Harvey, Madeline Ambrose, Vitalii Tereshchenko, Aldan Beaubien, Neelima Inala, Yousef Aggoune, Stark Pister, Anne Vetto, Melissa Kinsey, Tom Bumol, Ananda Goldrath, Xiaojun Li, Troy Torgerson, Peter Skene, Lauren Okada, Christian La France, Zach Thomson, Lucas Graybuck
{"title":"在每份出版物中主动提供可重复的分析透明度","authors":"Paul Meijer, Nicole Howard, Jessica Liang, Autumn Kelsey, Sathya Subramanian, Ed Johnson, Paul Mariz, James Harvey, Madeline Ambrose, Vitalii Tereshchenko, Aldan Beaubien, Neelima Inala, Yousef Aggoune, Stark Pister, Anne Vetto, Melissa Kinsey, Tom Bumol, Ananda Goldrath, Xiaojun Li, Troy Torgerson, Peter Skene, Lauren Okada, Christian La France, Zach Thomson, Lucas Graybuck","doi":"arxiv-2408.09103","DOIUrl":null,"url":null,"abstract":"The high incidence of irreproducible research has led to urgent appeals for\ntransparency and equitable practices in open science. For the scientific\ndisciplines that rely on computationally intensive analyses of large data sets,\na granular understanding of the analysis methodology is an essential component\nof reproducibility. This paper discusses the guiding principles of a\ncomputational reproducibility framework that enables a scientist to proactively\ngenerate a complete reproducible trace as analysis unfolds, and share data,\nmethods and executable tools as part of a scientific publication, allowing\nother researchers to verify results and easily re-execute the steps of the\nscientific investigation.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Provide Proactive Reproducible Analysis Transparency with Every Publication\",\"authors\":\"Paul Meijer, Nicole Howard, Jessica Liang, Autumn Kelsey, Sathya Subramanian, Ed Johnson, Paul Mariz, James Harvey, Madeline Ambrose, Vitalii Tereshchenko, Aldan Beaubien, Neelima Inala, Yousef Aggoune, Stark Pister, Anne Vetto, Melissa Kinsey, Tom Bumol, Ananda Goldrath, Xiaojun Li, Troy Torgerson, Peter Skene, Lauren Okada, Christian La France, Zach Thomson, Lucas Graybuck\",\"doi\":\"arxiv-2408.09103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high incidence of irreproducible research has led to urgent appeals for\\ntransparency and equitable practices in open science. For the scientific\\ndisciplines that rely on computationally intensive analyses of large data sets,\\na granular understanding of the analysis methodology is an essential component\\nof reproducibility. This paper discusses the guiding principles of a\\ncomputational reproducibility framework that enables a scientist to proactively\\ngenerate a complete reproducible trace as analysis unfolds, and share data,\\nmethods and executable tools as part of a scientific publication, allowing\\nother researchers to verify results and easily re-execute the steps of the\\nscientific investigation.\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不可再现研究的高发率导致人们迫切呼吁开放科学中的透明度和公平实践。对于依赖对大型数据集进行计算密集型分析的科学学科来说,对分析方法的细致了解是可重复性的重要组成部分。本文讨论了计算可重复性框架的指导原则,该框架能让科学家在分析过程中主动生成完整的可重复性跟踪,并将数据、方法和可执行工具作为科学出版物的一部分进行共享,从而让其他研究人员能够验证结果并轻松地重新执行科学调查的各个步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Provide Proactive Reproducible Analysis Transparency with Every Publication
The high incidence of irreproducible research has led to urgent appeals for transparency and equitable practices in open science. For the scientific disciplines that rely on computationally intensive analyses of large data sets, a granular understanding of the analysis methodology is an essential component of reproducibility. This paper discusses the guiding principles of a computational reproducibility framework that enables a scientist to proactively generate a complete reproducible trace as analysis unfolds, and share data, methods and executable tools as part of a scientific publication, allowing other researchers to verify results and easily re-execute the steps of the scientific investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信